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Abstract: A protein complex can be regarded as a functional module developed by inter-
acting proteins. The protein complex has attracted significant attention in bioinformatics
as a critical substance in life activities. Identifying protein complexes in protein–protein
interaction (PPI) networks is vital in life sciences and biological activities. Therefore, signif-
icant efforts have been made recently in biological experimental methods and computing
methods to detect protein complexes accurately. This study proposed a new method for
PPI networks to facilitate the processing and development of the following algorithms.
Then, a combination of the improved density peaks clustering algorithm (DPC) and the
fuzzy C-means clustering algorithm (FCM) was proposed to overcome the shortcomings of
the traditional FCM algorithm. In other words, the rationality of results obtained using the
FCM algorithm is closely related to the selection of cluster centers. The objective function
of the FCM algorithm was redesigned based on ‘high cohesion’ and ‘low coupling’. An
adaptive parameter-adjusting algorithm was designed to optimize the parameters of the
proposed detection algorithm. This algorithm is denoted as the DFPO algorithm (DPC-FCM
Parameter Optimization). Finally, the performance of the DFPO algorithm was evaluated
using multiple metrics and compared with over ten state-of-the-art protein complex detec-
tion algorithms. Experimental results indicate that the proposed DFPO algorithm exhibits
improved detection accuracy compared with other algorithms.

Keywords: protein–protein interaction network; protein complexes; fuzzy clustering
algorithm; density peaks clustering algorithm; parameter optimization; swarm intelligence
optimization algorithm

MSC: 05C85; 68W50

1. Introduction
As one of the most fundamental interdisciplinary topics, complex network analysis ex-

hibits excellent theoretical significance and application prospects; through investigations of
complex networks and artificial intelligence in theory and application, identifying commu-
nity structures in complex networks has attracted significant attention. A complex network
was once defined as comprising several or all of the following features: self-organization,
self-similarity, small world, and scale-free [1]. Indeed, a complex network is obtained by
abstracting and summarizing complex systems in the practical world. Analysis methods for
complex networks can be employed to describe daily life and social phenomena, and they
have been widely applied as they are easy yet effective.
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Detection of community structure refers to the process where a complex network is
divided into multiple subgraphs. In other words, nodes in a complex network would
be present in various community structures owing to their features. Nodes in the same
community structure are closely connected, while those in different community structures
are sparsely connected [2–5], resulting in the idea of ‘high cohesion, low coupling’. As an es-
sential structural feature of complex networks, community structures are naturally present
in complex networks of various types. For instance, community structure represents pages
or attributes with identical or similar subject categories in the World Wide Web (WWW);
people with identical interests in social networks (WeChat or Weibo) [6]; and a protein
complex in protein–protein interaction (PPI) networks. Overall, the detection of community
structures exhibits excellent significance to a thorough understanding of functions and fea-
tures of a complex network, determination of its intrinsic topological structure, clarification
of its potential, and prediction of its behaviors [7].

Various PPI datasets have been generated with the popularity of high-throughput
rapid detection technologies. These datasets can be naturally expressed as a network.
Specifically, proteins are represented by network nodes, and their interactions appear as
edges in the network. Generally, closely connected subgraphs in the PPI network are
assumed to be real protein complexes. Identifying such protein complexes in the PPI
network is significant for understanding life activities and exploring life science. The PPI
network is a ‘small-world’ network [8,9], and dense subgraphs or modules thereof typically
correspond to protein complexes [10,11]. Mining protein complexes in the PPI network
has excellent theoretical significance for investigating the complex activities of life, inter-
pretation of life mysteries, and understanding the intrinsic organizations and processes of
complex life networks at the system level. Additionally, detecting protein complexes is of
great scientific and commercial value for recognizing pathogenic genes, phenotypic effects
of gene mutations, and the evolution of biological networks [12].

During the completion of life activities, few proteins function alone; instead, most
proteins [13] interact with each other to form protein complexes or functional modules,
thus realizing their main functions [14]. A protein complex refers to a group of proteins
that aggregate and interact with each other to achieve a specific physiological process;
such an aggregate exists under particular space and time conditions. Hence, studies
of protein complexes facilitate understanding of cell activities and function realization
processes and would make significant contributions to life science and medicine in the
future. For instance, RNA polymerases are responsible for the synthesis of RNA, which
takes place during transcription; proteasomes are responsible for molecular degradation.
Both polymerases and proteasomes are common protein complexes. Traditional methods
for detecting protein complexes rely on biotechnologies such as TAP-MS (tandem affinity
purification) [15]. These methods are limited because some protein complexes with weak
binding may not be detected; yeast protein two-hybrid analysis [16] is readily exposed to
low detection sensitivity of false positive and false negative protein complexes. Meanwhile,
detecting protein complexes by biotechnologies is costly and time-consuming, and thus,
it cannot meet the needs in the field of proteomics [17]. Currently, computing-based
data mining methods are widely applied. Due to its low cost and short processing time,
computer technology can rapidly and accurately establish PPI networks, and computing-
based methods for detecting protein complexes have been developed [18].

Over the past decades, various computing-based methods have been proposed to
automatically detect protein complexes in PPI networks to overcome the drawbacks and
limitations of the experiment-based methods. As protein complexes are more likely to
be present in local PPI network areas with high density, various density-subgraph-based
protein complex detection algorithms have been proposed. However, these algorithms
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are barely applicable to detecting overlapping protein complexes and are incapable of
automatic and adaptive parameter settings according to the input PPI network. Therefore,
a novel protein complex detection algorithm that combines the fuzzy C-means cluster-
ing (FCM) algorithm with swarm intelligence optimization (SIO) can solve the above
urgent problems.

1.1. Related Works

The state-of-the-art protein complex detection algorithms are discussed from several
perspectives: methods for detecting protein complexes based on unsupervised and su-
pervised learning, methods for detecting protein complexes based on the SIO algorithm,
and methods for detecting protein complexes based on the FCM algorithm.

1.1.1. Protein Complex Detection Methods Based on Unsupervised Learning

In recent years, various methods have been proposed for detecting protein complexes.
Such methods are based on the hypothesis that the dense subgraphs in PPI networks are
the protein complexes to be detected. Based on this hypothesis, various methods based on
unsupervised learning have been proposed for detecting protein complexes.

Bader and Hogue proposed the protein complex detection algorithm (MCODE) [19].
This algorithm has three steps. First, the local neighborhood density of the node was
calculated, and a weight was assigned to the node according to the obtained density. Then,
nodes with large weights were employed as seeds. Finally, seeds were expanded for
detection. Proposed by Liu et al. in 2009 [20], CMC achieves the detection of protein
complexes by identifying the largest aggregate in the PPI network. The Markov clustering
algorithm (MCL) [21] achieves detection of protein complexes by simulation of a random
walk in the PPI network. In addition, Omranian and Nikoloski [22] proposed an algorithm
called CUBCO+, which employs GO semantic similarity to retain biologically relevant
interactions and uses link prediction approaches to predict protein complexes. Most
of the protein–protein interaction networks heavily suffer from noise. Wang et al. [23]
constructed a cross-species ortholog relation matrix and transferred GO terms from other
species to evaluate the confidence of PPIs, then used the PPI filter strategy to clean the
PPI network. Finally, they constructed a weighted clean PPI network, which is used for
detecting protein complexes.

Li et al. [24] proposed IPCA, which achieves the detection of protein complexes by
seed selection and local searching. SPICi is a clustering method for rapid clustering in
biological networks with small storage space occupied; it mainly achieves the detection of
clustering structures based on density function and support function [25]. ClusterONE [26]
achieves the detection of dense subgraphs in PPI networks by using a greedy algorithm,
and these subgraphs with higher cohesiveness scores are regarded as protein complexes.
CPredictor2.0 [27] is an algorithm that effectively identifies protein complexes in the PPI
network. Zhan et al. [28] proposed a partially shared signed network clustering model,
which considered PPI signs and identified the common and unique protein complexes in
different states. It is an effective way to jointly detect protein complexes from multiple
state-specific signed PPI networks.

Specifically, proteins are first grouped based on their function annotation information,
and density subgraphs were detected using the Markov algorithm and employed as protein
complexes. As a nonparametric greedy approximation algorithm, PC2P [29] converts
protein complex detection into network segmentation and can detect double-chain spanning
subgraphs comprising sparse and dense subgraphs. Lyu et al. [30] firstly calculated the
balanced weights to replace the original weights and divide the original PPIN into small
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PPINs, then enumerated the connected subset of each small PPIN and remove similar
PPINs This method, called BOPS, identifies potential protein complexes based on cohesion.

In COACH, the core of the protein complex is first detected, then attachment proteins
are introduced and mined [31]. Peng et al. [32] proposed the WPNCA based on the
core-attachment structure. First, density subgraphs are detected and used as the core of
protein complexes. Then, attachment proteins are recognized based on the core of protein
complexes. Owing to high proportions of false positive and false negative interactions in
PPI networks (50%) [33], algorithms such as PEWCC [34] have been proposed to mitigate
the influences of false positive and false negative interactions on detection of protein
complexes. The topological structure of the PPI network was employed, and weights were
assigned to interactions to improve the reliability of edges, thus enhancing the detection
accuracy of protein complexes. ICJointLE [35] is a classical method for detecting protein
complexes based on the co-expression and co-localization of proteins in the same protein
complex. SE-DMTG [36] is a seed-extending algorithm that achieves the detection of
protein complexes by a combinatorial function. The proposed MPC-C [37] is based on the
3-sigma principles. In addition, based on core attachment and second-order neighbors,
Yang Yu and Dezhou Kong [38] combined the resource allocation with gene expression to
detect protein complexes from the PPI network. Herein, a series of time-series subnetworks
are established using gene expression data. These time-series subnetworks constitute a
dynamic PPI network; static and dynamic protein complexes in original static and dynamic
PPI networks were detected, respectively.

Nevertheless, the methods mentioned above are based on unsupervised learning and
exhibit the following limitations: (1) the accuracy is reasonable only if interacting edges
are highly reliable; (2) the detected protein complex has a relatively single topological
structure; (3) known topological features of protein complexes can barely be effectively
utilized and learned.

1.1.2. Protein Complex Detection Methods Based on Supervised Learning

Although methods based on unsupervised learning are not affected by the insufficient
and unskilled nature of protein complex training models, they cannot effectively learn the
structures of standard protein complexes; instead, they can only detect protein complexes
with simple topological structures. Recently, increasing known protein complexes have
been reported, and training the model of protein complexes has become increasingly nor-
mative. As a result, several methods for detecting protein complexes based on supervised
learning have been proposed. Yu et al. [39] reported the detection of protein complexes
by using a trained regression model and some identified initial clusters. Lei et al. [40]
reported a semi-learning algorithm that achieves the detection of protein complexes based
on a trained neural network model. ClusterEPs [41] can effectively distinguish real protein
complexes from random subgraphs and determine whether a specific subgraph is a protein
complex. Dong et al. reported ClusterSS [42], which combines a neural network with a local
modularity graph and achieves the detection of protein complexes based on the combina-
tion and searching strategies. Liu et al. [43] reported a supervised learning algorithm based
on a network embedding method and random forest model. Sikandar et al. [44] proposed
a protein complex detection algorithm based on decision trees and biological information.
Wang et al. [45] proposed a supervised learning method based on network representation
learning and the gene ontology knowledge of known protein complexes, which can predict
new protein complexes. Palukuri et al. [46] developed and evaluated a reinforcement
learning pipeline algorithm that is trained to calculate the value of different subgraphs
encountered while walking on the network to reconstruct known complexes and then scales
the reinforcement learning pipeline to search for novel protein complexes. Based on the
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topological characteristics of the subgraph, Sahoo et al. [47] proposed a decision-tree-based
method that is effective and efficient in identifying protein complexes from large-scale PPI
networks not only on the human Database of Interacting Proteins but also on Biological
General Repository for Interaction Datasets. At the same time, Chen et al. [48] presented an
adaptive convolution graph network to predict protein functional modules that effectively
integrate protein gene ontology attributes and network topology.

Nevertheless, methods for the detection of protein complexes based on supervised
learning have several limitations: (1) low detection accuracy; (2) poor extraction of effective
topological features describing protein complexes; and (3) the dataset of protein complexes
available for training is small, and the trained model is overfitted.

1.1.3. Protein Complex Detection Methods Based on the SIO Algorithm

Researchers working on SIO algorithms would observe and imitate the behaviors of
social animals to achieve optimization. Due to excellent optimization performance and
robustness, the SIO algorithms have been widely applied to detect protein complexes. Cur-
rently, the SIO algorithms are applied in identifying protein complexes from two perspectives.

One is detection of protein complexes by using the SIO algorithms. In 2015, Ra-
madan et al. [49] proposed a method for detection of protein complex by combining genetic
algorithm and drosophila optimization clustering algorithm [50]; in 2017, Zhang et al.
proposed a novel method based on firefly algorithm [51]; in 2017, Zhao et al. [52] proposed
the improved cuckoo search clustering (ICSC) algorithm; in 2019, Lei et al. proposed a
method for prediction of protein complexes based on the moth-flame optimization (MFO)
algorithm [53]; and in 2022, Feng et al. [54] developed a new MP-DE algorithm, which gen-
erated protein complex cores using Markov clustering and searched for attached proteins
using a differential evolution algorithm.

The other is optimizing parameters proposed by the detection methods using the
SIO algorithms. In 2015, Lei et al. [55] proposed the ISHC clustering method and in 2016,
Lei et al. [56] proposed the F-MCL clustering algorithm, which are based on Markov clus-
tering and firefly algorithms. Nevertheless, such algorithms exhibited several limitations.
For instance, these algorithms could have displayed better local optimization capability
despite strong global optimization capability.

1.1.4. Protein Complex Detection Methods Based on the FCM Algorithm

Due to good accuracy and high efficiency, FCM-based clustering algorithms have
attracted significant attention recently. Lei et al. proposed a clustering model [57], which
combines the optimization mechanism of an artificial bee colony (ABC) with a fuzzy
membership matrix for the detection of protein complexes. Mao et al. [58] designed a
clustering algorithm based on a fuzzy ant colony algorithm for mining protein complexes
and proposed a novel objective function. Hu et al. [59] proposed a method that realizes
the detection of protein complexes in the yeast PPI network by using a fuzzy clustering
algorithm. Zhang et al. [60] investigated the detection of community structures in the
complex network using FCM. In this study, overlapping protein complexes were detected
using the fuzzy clustering algorithm owing to its excellent performance in graph clustering
tasks [61]. However, a fuzzy clustering algorithm is limited by several issues. For instance,
the performance of the FCM algorithm is closely related to the selection of the initial
clustering center and the number of clusters; the design of the objective function is not
aligned with the detection of protein complexes; and most parameter setting strategies are
based on manual parameter adjustment, which is not flexible enough.
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1.2. Motivation and Innovation

According to public protein complex databases, overlapping proteins are widely
present for different protein complexes. In other words, a considerable amount of overlap-
ping protein complexes is present in PPI networks. As a result, the detection of overlapping
protein complexes is exceptionally challenging. Therefore, it is urgent to develop an over-
lapping protein complex detection algorithm that further considers overlapping factors to
enhance the detection accuracy of overlapping protein complexes.

The FCM algorithm can detect overlapping protein complexes due to its fuzzy mem-
bership matrix. Meanwhile, the FCM algorithm exhibits higher accuracy and applicability
than other clustering algorithms. Nevertheless, the clustering center and cluster number
were generated by random initialization in traditional FCM algorithms. As a result, the se-
lection of the initial clustering center and cluster number directly affects the clustering
algorithm’s performance. The clustering center and number could be determined using
the traditional density peaks clustering (DPC) algorithm in the FCM algorithm. However,
the traditional DPC algorithm involves tedious distance calculation and is not directly
applicable to the PPI networks. Hence, this paper proposed an improved DPC algorithm to
determine the clustering center and number. This method calculated the local densities of
all sample points and compared them with those of their neighbor proteins. Then, proteins
with a local density higher than their neighbor protein were selected as clustering centers.
Additionally, proteins with local density over the threshold and no other clustering centers
present in their vicinities were employed as initial clustering centers for the FCM algorithm;
the number of initial clustering centers was used as the initial cluster number of the FCM
algorithm. The objective function of the traditional FCM algorithm only considers that the
points within one specific category should be closely related to each other and ignores that
the distances between different classes should be significant.

In this paper, an objective function considering both high cohesion and low coupling
was designed and used to guide clustering by the FCM algorithm. In the proposed im-
proved FCM detection algorithm, the input PPI network was preprocessed, the clustering
center and cluster number of the FCM algorithm were initialized by the improved DPC
algorithm based on the drawbacks of the current FCM algorithm, and an objective function
suitable for the detection of protein complex was proposed, thus achieving optimization of
membership matrix by the objective function and FCM algorithm. Additionally, a protein
division strategy was proposed to detect overlapping protein complexes.

Most traditional methods for protein complex detection require manual parameter
adjustment, which has two issues. First, manual parameter adjustment needs to be more
flexible and adaptively set parameters for different PPI networks according to the input PPI
network. Inspired by the ABC algorithm, we proposed an adaptive parameter-adjusting al-
gorithm for automatic parameter optimization of the proposed detection algorithm. Specif-
ically, global parameter optimization and local parameter optimization were proposed.
In the way of roulette, global optimization was executed; then, the probability of global
optimization was reduced, and the probability of local optimization was raised. In this
way, the adaptive parameter-adjusting algorithm can rapidly identify the approximate
ranges of parameters at the beginning, and local optima of parameters can be determined
in local ranges.

To validate the effectiveness of the proposed DFPO algorithm, evaluation metrics such
as F-measure, accuracy (ACC), maximum matching ratio (MMR), Frac, coverage rate (CR),
and their sum (Total score) were employed to analyze the algorithm’s performance and
compare methods in the detection of protein complexes. The experimental results revealed
that the proposed DFPO algorithm was superior to other excellent algorithms regarding
the evaluation metrics involved.
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The main contributions are summarized as follows:

• This paper proposes a new method for protein complex detection, the DFPO algorithm
(DPC-FCM Parameter Optimization).

• This paper proposes a new method that combines the improved density peaks cluster-
ing algorithm (DPC) and the fuzzy C-means clustering algorithm (FCM) to overcome
the shortcomings of the traditional FCM algorithm.

• This paper designed a new objective function for the FCM algorithm based on ‘high
cohesion’ and ‘low coupling’.

• An adaptive parameter-adjusting algorithm was designed to optimize the parameters
of the proposed DFPO algorithm.

The remaining chapters of this paper are as follows. Section 2 briefly introduces the
algorithms involved in this study and describes the proposed algorithm. Section 3 presents
the experiment and results, including datasets, evaluation metrics, and results analysis.
Section 4 gives conclusions and a future outlook.

2. Materials and Methods
2.1. Problem Definition

The PPI network can be represented by a classical graph model G = (V, E) corre-
sponding to a binary tuple. Herein, V corresponds to the protein aggregate in PPI network
G, and E corresponds to the interactions in PPI network G. The interconnection relationship
in G can be expressed by eij. If eij ∈ E, then vi and vj have a connection. In this study,
the adjacent matrix D = [dij](1 ≤ i, j ≤ n) was used to describe G. dij can be determined
by Equation (1):

dij =

{
1, eij ∈ E
0, others

(1)

Identification of protein complexes in the PPI network can be regarded as a soft
division of V proteins in the PPI network into K cluster sets, namely V = ∪K

k=1Ck. Each
cluster Ck is regarded as one detected protein complex. Figure 1 illustrates the mining of
protein complexes in the PPI network.

Cluster ONE method for

detecting protein complexes

Input Gavin PPI network Detected Protein Complexes

Cluster         Details

Nodes:40 
Density:0.750
Quality:0.924
�-value:0.000

Nodes:34  
Density:0.752
Quality:0.938
�-value:0.000

Nodes:35  
Density:0.504
Quality:0.625
�-value:0.000

Nodes:37 
Density:0.477
Quality:0.646
�-value:0.000

Nodes:33
Density:0.500
Quality:0.574
�-value:1.651× 10−9

The yellow protein does not 
belong to any detected 
protein complex.

The red protein belongs 
to the detected protein 
complexes.

Figure 1. Schematic of the identification of protein complexes in the PPI network based on Cytoscape.

An excellent method for the detection of the protein complex is supposed to achieve
a balance between the following aspects: (1) proteins in the same protein complex are
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closely connected, while proteins in different protein complexes are sparsely connected;
(2) proteins in the same protein complex have similar attributes, while proteins in different
protein complexes have different attributes; and (3) different protein complexes may have
overlapping proteins, indicating that overlapping proteins participate in the generation of
multiple protein complexes.

2.2. Relevant Algorithms
2.2.1. DPC Algorithm

DPC is an algorithm for clustering based on fast search and density peak [62]. The core
features of the DPC algorithm are as follows: (1) the density of nodes near the clustering
center is lower than that of the clustering center and (2) the distances between two clustering
centers are far [63]. The specific steps of the algorithm are as follows.

(1) Calculate similarity and establish a matrix

Assuming a dataset of X = {x1, x2, · · · , xn} with a size of n, where dij is the Euclidean
distance between xi and xj and denotes the distance measurement between them, then it is
denoted in Equation (2):

dij = ||xi − xj||2 (2)

Then, the similarity of all data was calculated, and a matrix with distance as the
content was established, and is defined in Equation (3):

D = [d1, d2, . . . , dn]
T ∈ Rn∗n (3)

where D is the established matrix, which is a symmetric one.

(2) Calculate the local density and relative distance of sample points

The local density can be calculated by Equation (4):
ρ = ∑j X(dij − dc)

X(x) =

{
1, x < 0
0, x ≥ 0

(4)

where dc is the cut-off distance, the only input parameter that shall be set manually.
The relative distance is between the current sample point and the closest point with a

larger local density. It can be calculated by Equation (5):

σi =


min

j
(dij), i f ∃j : ρj > ρi

max
j
(dij), otherwise

(5)

A decision diagram was developed with σ and ρ as X and Y axes. Points with high σ

and ρ in the decision diagram were selected as clustering centers of the DPC algorithm [64].
In contrast, other points were categorized into the classification containing high-density
sample points closest to the respective point.

2.2.2. FCM Clustering Algorithm

In the FCM algorithm, the objective function was designed, the membership of all
sample points for each clustering center was determined by constantly updating the
membership matrix and the clustering center location, and the center point of the maximum
membership was selected as its category to achieve clustering [65]. The steps are as follows.
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X = {x1, x2, · · · , xn} is present and xi = {xi1, . . . , xin} is present for each xi. The con-
straint was set as ∑C

j=1 uij = 1, where i is a set of natural numbers. The traditional objective
function of FCM is as follows in Equation (6):

J(u, c, k) =
N

∑
i=1

K

∑
j=1

um
ij d(xi, cj) (6)

where K is the number of clustering category; uij is the membership matrix; m is the
weighted index and m > 1; d(xi, cj) is the Euclidean distance from xi to cj. Herein, xi is the
current sample point, and cj is a clustering center.

uij and cj can be described by Equations (7) and (8), respectively:

uij = [
c

∑
k=1

(
d(xi, cj)

d(xi, ck)
)

1
m−1 ]−1, i = 1, 2, . . . , N; j = 1, 2, . . . , K (7)

cj =
∑N

i=1 um
ij xi

∑N
i=1 um

ij
, j = 1, 2, . . . , K (8)

In traditional FCM algorithms, the difference in membership matrices after two it-
erations serves as the termination condition. Before reaching the termination conditions,
iterations continue until better clustering results are obtained.

2.3. DFPO Algorithm

Methods for the detection of overlapping protein complexes were investigated.
The DFPO algorithm comprises preprocessing of the PPI network, determination of the
initial clustering center and number of the FCM algorithm by using the improved DPC
algorithm, protein clustering by using the FCM algorithm, parameter optimization of the
detection algorithm by using adaptive parameter-adjusting algorithms, and evaluation of
the effectiveness of the proposed algorithm based on various evaluation metrics. Figure 2
illustrates the flowchart of the present study.

Preprocess the input 
PPI network

Start

Determine the cluster center and 
number by using the improved DPC 

algorithm

Detect protein complexes based 
on improved FCM algorithm 
combining the improved DPC 

algorithm

Optimize the combination 
parameters of our detection 

algorithm by using the adaptive 
parameter-adjusting algorithm

End

Figure 2. The flowchart of the presented DFPO algorithm.

In this study, protein complex detection is described as the optimization of an objective
function. In the FCM algorithm, the selection of the initial clustering center significantly
affects clustering performance. Hence, the improved DPC algorithm was proposed to
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determine the initial clustering center and number in the FCM algorithm. Then, protein
complexes were mined by using the FCM algorithm. Meanwhile, the FCM algorithm
involves considerable parameters, and manual parameter adjustment is tedious and costly.
Therefore, an adaptive parameter-adjusting algorithm was proposed in this study to opti-
mize parameters in the FCM algorithm. Substeps of the proposed DFPO algorithm will
be described below. In this study, the detection of the protein complex is described as the
optimization of an objective function. In the FCM algorithm, the selection of the initial
clustering center significantly affects clustering performance. Hence, the improved DPC
algorithm was proposed to determine the initial clustering center and number in the FCM
algorithm. Then, protein complexes were mined by using the FCM algorithm. Meanwhile,
the details of the DPC-FCM algorithm are shown in Algorithm 1.

In addition, the FCM algorithm involves considerable parameters and manual pa-
rameter adjustment is tedious and costly. Therefore, in this study, an adaptive parameter
adjustment algorithm was proposed to optimize the parameters in the FCM algorithm.
Substeps of the proposed DFPO algorithm will be described below.

Algorithm 1 DPC-FCM algorithm

Input: G: the PPI network;
Output: LiPCs: the set of predicted protein complexes;

1: initialize Identified protein complexes, IiPCs = ∅; paramK = 5; paramdensity = 0.04;
paramloss = 0.045; paramdivide = 1.9;

2: Step 1: Preprocessing of PPI network, and construct a graph G = (V, E);
3: Step 2: Generating the clustering center and number based on improved DPC algorithm;
4: Calculating the weight of interacting edges using Equation (13);
5: Calculation of local density of sample points using Equation (15);
6: Calculation of scores of protein sample points using Equation (16) and paramdivide;
7: Selection of clustering center using Equation (17) and paramdensity;
8: Step 3: Improved FCM algorithm combining the improved DPC algorithm to detect

protein complexes;
9: Determining initial clustering center and number of the FCM algorithm using Equation (18);

10: Calculating the value of objective function based on Equation (19);
11: Determination of category of each protein;
12: Step 4: The proposed adaptive parameter-adjusting algorithm is used to optimize

combination parameters including paramK, paramdensity, paramloss, paramdivide;
13: Calculating the value of objective function based on Equation (19) and paramloss;
14: Determination of category of each protein and paramK;
15: Obtain the initial identified protein complexes, IiPCs;
16: return Initial identified protein complexes, IiPCs.

2.3.1. Preprocessing of PPI Network

A data sample in PPI networks is a set of protein interactions instead of a discrete
point. Hence, a PPI network is developed to serve as the input of the proposed detection
algorithm. Since discrete data are the input required by the subsequent detection algorithm,
while the data in the input PPI network dataset are graph data, it is necessary to preprocess
the input PPI network to facilitate the subsequent processing of the detection algorithm.

After modeling and visualizing, the PPI network can be regarded as a Graph G, which
comprises protein aggregate V and edge set E, and each maximal connected subgraph in
the graph is highly likely to be the protein complex to be detected. First, an adjacent matrix
with the size of (n × (n + 1)) was established to mark the presence of an edge between the
two proteins (1 if an edge is present and 0 if no edge is present). The content of column
n + 1 is the density peak score of each protein, which can be calculated by the method
described in Section 2.3.2. Upon establishment of the adjacent matrix, if the value at the ith
(i ≤ n) row and the jth (j ≤ n) column was 0, no edge is present between the ith protein
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and the jth protein; if the value was 1, an edge is present between the ith protein and the
jth protein. The vector generated by the ith row is the vector of the ith protein and is used
to calculate and process subsequent detection algorithms.

2.3.2. Improved DPC Algorithm

The improved DPC algorithm was developed based on the traditional DPC algorithm
to determine the clustering center and cluster number in the improved FCM detection
algorithm. The data entered in this paper are graph data, which differ from the discrete
data used by DPC; thus, data representation conversion is required. The FCM and auto-
matic parameter optimization algorithms also require continuous iterations, resulting in
massive time consumption. Hence, the proposed algorithm shall accurately identify the
clustering center and cluster number to reduce time consumption and facilitate subsequent
algorithm optimization.

In DPC, the local density of each point and its distance from the closest point with a
more significant local density were calculated, and the point with a more significant density
and longer distance was employed as the clustering center. Similarly, the local density of
each point was calculated in this study, and this local density was regarded as the initial
score for this point. However, graph data were used in the proposed algorithm, and the
determination of local density is different from that in the original DPC algorithm. First,
traverse the neighbor protein of this sample point to verify the presence of a protein with
a higher local density. If so, this neighbor protein is more suitable as a clustering center.
In other words, the effect of this sample point as a clustering center is slightly worse. Hence,
the initial score of this point can be reduced, and the reduced result can be used to calculate
the final protein score. Based on this score, parameters are set, the distance is determined,
and an appropriate clustering center is selected.

(1) Calculation of weights of interacting edges

The weight of interacting edges in the PPI network was calculated to calculate protein
density based on this weight. Indeed, this weight considers four attributed information of
proteins, including subcellular localization information, gene co-expression data informa-
tion, functional annotation information, and shared neighbor information of two interacting
proteins. In this way, interacting edges were weighted and used as the score of the reliability
of interacting edges.

In Equation (9), weightSL represents each protein’s subcellular localization attribute
weight. Two proteins that have various attributes of the same location are readily exposed
to interaction and are defined in Equation (9):

weightSL =
nij

min(ni, nj)
(9)

where nij defines the number of subcellular localization attributes shared by the two pro-
teins, ni defines the number of subcellular localization attributes of protein i, and nj defines
the number of subcellular localization attributes of protein j.

As the weight of gene expression information of two interacting proteins, weightGE

can describe the co-expression similarity of two proteins, which was calculated based on
the person correlation coefficient and is defined in Equation (10):

weightGE =
∑(xi − x)(yi − y))√

(∑ xi − x)2
√
(∑ yi − y)2

(10)
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weightCN describes the topological structure similarity of two interacting proteins,
meaning that the interaction similarity of the two proteins is depicted by the number of
neighbor nodes shared by the two proteins, and is defined in Equation (11):

weightCN =
n2

ij

(ni)× (nj)
(11)

where nij denotes the number of neighbor nodes shared by the two proteins, ni denotes the
number of neighbor nodes the ith protein, and nj denotes the number of neighbor nodes of
the jth protein.

weightGO contains a series of functional annotation attributes of proteins. The
weightGO values of the two proteins were vectorized, and the cosine similarity of the
two protein vectors was calculated to determine the interaction similarity of two interacting
proteins, which is defined in Equation (12):

weightGO =
∑n

i=1(xi × yi)√
∑n

i=1 x2
i ×

√
∑n

i=1 y2
i

(12)

The average weight was obtained by combining the four calculation methods men-
tioned above, and the method was employed for the calculation of weights of interacting
edges in the proposed algorithm and is defined in Equation (13):

weight =
weightSL + weightGE + weightCN + weightGO

4
(13)

(2) Calculation of the local density of sample points

In a specific maximal connected subgraph, one protein sample point was selected,
as well as the sum of weights of all edges of neighbor proteins adjacent to this protein
sample point (see Equation (14)). Then, the sum was divided by the number of all possible
edges to obtain the local density of the protein sample point. In other words, the total
weight of the edges of the protein sample point and its neighbor proteins was assigned to
all possible edges, which is consistent with the definition of density in Equation (15):

Sw =
N

∑
i=1

weighti (14)

ρ =
2 × Sw

ns × (ns − 1)
(15)

where weighti denotes the weight of each edge in the current neighbor subgraph, Sw
denotes the sum of weights of all edges in the neighbor subgraph consisting of the protein
sample point and its direct neighbor proteins, and ns denotes the number of proteins in the
current neighbor subgraph.

(3) Calculation of scores of protein sample points

In the traditional DPC algorithm, a protein sample point with a density more signifi-
cant than that of the protein sample point and the minimum distance shall be identified
after obtaining the local density of the protein sample point, and the distance between
the two protein points shall be calculated. The clustering center shall be determined
from local density and distance perspectives. However, the calculation of the distance
between two protein nodes in the proposed algorithm is complicated as the data used
are graph data. Additionally, successive identification of qualified protein points and
distance calculation in the case of a dataset containing various protein sample points could
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be time-consuming. As the FCM and adaptive parameter-adjusting algorithm would be
considerably time-consuming, it is essential to propose an appropriate method to reduce
time costs.

As discussed, the selection of a clustering center is closely related to the local density.
Indeed, a protein with high local density is suitable as the clustering center. However,
various proteins in one dense subgraph may have large local densities, and ’low coupling’
would be violated if all of them were used as clustering centers. Hence, a protein with
higher local density shall be identified in this dense subgraph as the clustering center.
In the proposed algorithm, the distance of each protein pair is not calculated. Hence, all
proteins that are mutually adjacent nodes may be selected as the clustering centers, which
is irrational if a threshold is used as the criteria for selecting clustering centers (proteins
with a density greater than the threshold are selected as clustering centers). It is proposed
in this study that for the current protein sample point (xi), the presence of a neighbor
protein (xj) with a higher local density suggests that xi is more unsuitable as a clustering
center in this dense subgraph compared with xj. It has been confirmed that proteins with
high local density are suitable as clustering centers. Therefore, it can be deduced that a
protein unsuitable for a clustering center is supposed to have a low local density. As a
result, the probability of a protein being selected as a clustering center can be reduced by
reducing its local density. In this study, the local density of sample point (ρi) obtained in
Step 1 was employed as the initial score of xi and successively compared with the initial
scores of its neighbor proteins. If a protein with a higher initial score is found, the score of
the current protein is reduced, and the score obtained after traversing all neighbor nodes is
the final score of the current protein (Score), as defined in Equation (16):

Score =
Score0

paramdivide
(16)

where Score0 is the initial score and paramdivide is a parameter reflecting the scaling factor
of the density score. paramdivide was employed as a parameter of the adaptive parameter-
adjusting algorithm and optimized.

(4) Selection of the clustering center

paramdensity was set to be a parameter for selecting the clustering center. Specifically,
protein sample points with scores more significant than paramdensity were regarded as
clustering centers, and it was determined whether these proteins were suitable as clustering
centers. For protein xi, which has been selected as a clustering center, xj, which is the next
protein to be selected as a clustering center, cannot be selected as a clustering center if it
has an over-small distance from xi (<1.0 in this case), in order to ensure that the distance
between two clustering centers is not over-small. The low coupling clustering algorithm
would eventually select several clustering centers. These protein points would be used
as initial clustering centers in the FCM algorithm, and the number of these protein points
would be used as an input parameter. The distance of two protein centers can be calculated
by Equation (17):

dij = ||xi − xj||2 (17)

2.3.3. Improved FCM Algorithm Combining the Improved DPC Algorithm

Despite its good performance in tackling specific clustering issues, traditional FCM
algorithms exhibit some defects. For instance, the selection of initial points significantly
affects the results. Specifically, good clustering performance can be expected in rational
selection of random initial points; if random initial points are not appropriately selected
(i.e., several initial points at edges), the clustering performance would not be as expected.
Additionally, the clustering center number selection significantly affects the algorithm’s
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performance. This study combined the proposed improved DPC algorithm with the
FCM algorithm. Specifically, the clustering center was determined by the improved DPC
algorithm, and the number of FCM algorithms for reclustering was used as the initial
clustering center.

Additionally, traditional FCM algorithms rely on determining the objective function
based on the product of membership and Euclidean distance of the two protein points.
For this reason, traditional FCM algorithms only consider the high cohesion state within
each community structure; that is, the points in the same community structure are closely
connected, while the fact that points in different community structures are sparsely con-
nected is not considered. This study proposes a new novel objective function for clustering
so that both high cohesion and low coupling are considered.

(1) Determination of the initial clustering center and number of the FCM algorithm

As mentioned in Section 2.3.2, clustering center and number were determined using
the improved DPC algorithm and used as parameter input of the FCM algorithm. Herein,
the clustering center set and the number of clustering centers were set to be the initial
clustering center and initial cluster number, respectively. This method is superior to the
FCM algorithm with a randomly initialized clustering center and number in terms of
clustering performance.

(2) Design of the objective function

Traditional FCM algorithm considers ‘high cohesion’ but not ‘low coupling’ of different
categories. In this study, the design of the objective function would integrate ‘high cohesion,
low coupling’ with the detection of the protein complex to optimize an objective function.
For ‘high cohesion’, the product of membership and Euclidean distance of the two points
(see Equation (6)) was used for calculation. For ‘low coupling’, the following method is
proposed: for xj, the closest clustering center protein (xk) was identified and the offset
direction of xj can be obtained by subtracting the vector of xk from the vector of xj. In this
way, the distances between clustering centers are large enough to meet the requirements of
‘low coupling’, and it is defined in Equation (18):

A =
K

∑
j=1

min
j ̸=k∥cj − ck∥2 (18)

where K represents the number of proteins as clustering center, cj represents the vector of
current clustering center protein, ck represents the vector of the closest clustering center
protein, and ∥cj − ck∥2 represents the distance from cj to ck.

As a function designed to realize high cohesion in clustering, J should be as small
as possible; as a function designed to realize high cohesion in clustering, A should be as
large as possible, and it can realize low coupling in different clusters. Additionally, an over-
large distance between two clustering centers may lead to cases where marginal points of
edges serve as clustering centers, resulting in poor clustering performances. In this study,
the weights of J were set as one and A is set as a value less than 1 in the design of objective
function to achieve improved clustering performance, and is defined in Equation (19):

Jloss = J − paramloss A (19)

where paramloss is a parameter less than one, and it denotes the weight of A in the objective
function. paramloss as one of the parameters was adjusted in the adaptive parameter-
adjusting algorithm.

(3) Determination of the category of each protein
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In traditional clustering of discrete points, the membership matrix of each protein
and all clustering centers was determined, while the clustering center where the maxi-
mum membership is located was selected; the membership matrix was classified into the
community where the clustering center is located. This is not the case for PPI networks.
Indeed, each protein in the PPI network may participate in the generation of multiple
protein complexes. In other words, each protein can belong to multiple protein complexes,
meaning that this protein could be overlapping. First, the weights of each protein belonging
to different clustering centers were calculated according to the membership matrix. Then,
all clustering centers were sorted in descending order according to this weight. After that,
clustering centers were placed at the top of the list according to the weight, and this protein
was added to the protein complexes represented by these clustering centers. Herein, this
number was set to be paramK, which reflects the number of protein complexes to which each
protein belongs. Clustering of the input PPI network was conducted using the improved
FCM algorithm according to the objective function to obtain protein complexes finally.

2.3.4. Adaptive Parameter Adjusting Algorithm

The details of the Adaptive Parameter Adjusting Algorithm are shown in Algorithm 2.

(1) Fitness function

Inspired by the ABC algorithm, we proposed an adaptive parameter-adjusting algo-
rithm PO (Parameter Optimization). First, an appropriate fitness function was designed
and selected. Each protein complex’s weighted modularity score (modularity) was cal-
culated [26], and the sum of weighted modularity scores of all protein complexes in the
detected protein complexes was determined. Then, the sum of the weighted modularity
score was divided by the number of detected protein complexes to obtain the fitness of
parameter adjustment in the DFPO algorithm.

First, the sum of weights of all edges in each protein complex s (weightin) was cal-
culated. For proteins in the current protein complex s, if a neighbor node that does not
belong to the current protein complex s is present, the sum of weights of all edges con-
necting neighbor proteins and the current protein complex s (weightout) was calculated.
The weighted module score of the current protein complex s can be obtained by dividing
the former by the sum, as shown in Equation (20):

modularity(s) =
weightin
weightout

(20)

Finally, weighted module scores of all detected protein complexes were determined
and divided by the number of protein complexes, and the obtained average modularity
score of protein complex was used as the fitness of the DFPO algorithm (M) is defined in
Equation (21):

M =
∑n

k=1 modularity(sk)

N
(21)

where weightin defines the sum of weights of all edges in one detected protein complex,
weightout defines the sum of weights of all edges of proteins in one detected protein
complex and neighbor proteins in this detected protein complex, and N defines the number
of detected protein complexes.
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Algorithm 2 Adaptive parameter-adjusting algorithm

Input: The weighted PPI network, G(V, E, W); Initial identified protein complexes,
IiPCs; paramK = 5; paramdensity = 0.04; paramloss = 0.045; paramdivide = 1.9;
paramstride

K = 1; paramstride
density = 0.01; paramstride

divide = 0.05; paramstride
loss = 0.005; parammin

K = 3;

parammax
K = 7; parammin

density = 0.01; parammax
density = 0.3; parammin

divide = 0.8; parammax
divide = 1.5;

parammin
loss = 0.02; parammax

loss = 0.06; epochmax = 100; Rvalue = 200;
Output: Identified protein complexes, IPCs;

initialize i = 0; Jbest
loss = 0.0

2: while epoch < epochmax do
if np.random.uni f orm(0, 500) > Rvalue then

4: whichparam = np.random.uniform(0, 8);
if whichparam < 2 then

6: paramK = paramK + np.random.uni f orm(−paramstride
K , paramstride

K )
else if whichparam < 4 then

8: paramdensity = paramdensity + np.random.uniform(−paramstride
density, paramstride

density)

else if whichparam < 6 then
10: paramdivide = paramdivide + np.random.uni f orm(−paramstride

divide, paramstride
divide)

else
12: paramloss = paramloss + np.random.uni f orm(−paramstride

loss , paramstride
loss )

end if
14: else

paramK = np.random.uni f orm(parammin
K , parammax

K )

16: paramdensity = np.random.uni f orm(parammin
density, parammax

density)

paramdivide = np.random.uni f orm(parammin
divide, parammax

divide)

18: paramloss = np.random.uni f orm(parammin
loss , parammax

loss )
end if

20: if Rvalue > 50 then
Rvalue = Rvalue− 1

22: end if
current identified protein complexes (CIPCs), Ji

loss = DPC-FCM Algorithm 1
(paramK, paramdensity, paramdivide, paramloss)

24: if Ji
loss > Jbest

loss then
parambest

K = paramK
26: parambest

density = paramdensity

parambest
divide = paramdivide

28: parambest
loss = paramloss

else
30: paramK = parambest

K
paramdensity = parambest

density

32: paramdivide = parambest
divide

paramloss = parambest
loss

34: end if
i = i + 1;

36: end while
Obtain the finally identified protein complexes (FIPCs), Jbest

loss = DPC-FCM Algorithm 1
(parambest

K , parambest
density, parambest

divide, parambest
loss);

38: return Finally Identified protein complexes, FIPCs.

(2) Adaptive parameter-adjusting algorithm

As an SIO algorithm, the ABC algorithm categorizes bees during honey collection as
foragers, observers, or scouts. Its objective is to identify the nectar source with the most
materials. After determining the fitness of each nectar source, foragers would continue
to search for new sources based on the greedy strategy. Then, observers would select
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one nectar source according to the probability. A new nectar source would be acquired
by random disturbance at this nectar source, accompanied by a calculation of its fitness.
If observers fail to find a better source after multiple trials, the forager who locates this
source will become a scout to find a new one.

The proposed DFPO algorithm involves identifying new nectar sources by observer
disturbance, as in the ABC algorithm, and global optimization to avoid local optimal
solutions. As shown in Figure 3, there are six steps: (1) the iteration times of the adaptive
parameter-adjusting algorithm were determined and used as termination conditions of the
proposed algorithm. The iteration times shall be sufficient to make the results convincing.
Meanwhile, the FCM algorithm would also iterate multiple times to search for an optimal
solution as the improved DPC algorithm identifies clustering centers for the FCM algorithm.
Therefore, the iteration times of the FCM algorithm can be a manageable size, as an optimal
solution can be obtained after several iterations, and further iterations, which are time-
consuming, can barely identify better results. Overall, the iteration times were set to
be 100 in this study to balance the time and performance. (2) A constant C1 was set,
and a random number (R1) was generated within the designated range. If R1 > C1,
local parameter optimization was executed; otherwise, global parameter optimization was
executed. Meanwhile, C1 decreased as the iteration times increased so that it is guaranteed
that the probability of identifying an optimal solution in the global scope decreases during
the entire process of parameter optimization. In other words, we hope that the adaptive
parameter-adjusting algorithm can first identify an appropriate parameter in the global
scope to determine an approximate range before adjusting each parameter to identify a more
suitable parameter combination. (3) Global parameter optimization refers to the random
disturbance of all parameters in the DFPO algorithm. In local parameter optimization,
a random number (R2) of 0∼8 is generated: if 0 ≤ R2 < 2, the first parameter paramK is
disturbed; if 2 ≤ R2 < 4, the second parameter paramdensity is disturbed; if 4 ≤ R2 < 6,
the third parameter paramdivide is disturbed; if 6 ≤ R2 < 8, the fourth parameter paramloss

is disturbed. After parameter disturbance in each iteration, the DFPO algorithm’s fitness
was calculated using this parameter combination. (4) The fitness of the DFPO algorithm
was recalculated for parameter combination after each disturbance. Then, the old fitness
was substituted by the new fitness, and the new parameter combination substituted the
old parameter combination if the new fitness was larger than the old fitness; otherwise, no
steps were taken. (5) Iterations are terminated if the iteration times meet the termination
conditions; otherwise, iterations are continued. (6) Clustering of the input PPI network was
executed with the optimized parameter combination as the input parameter in the DFPO
algorithm to obtain the detected protein complex set.
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Figure 3. The flowchart of the adaptive parameter-adjusting algorithm for DFPO.

3. Results
3.1. Experimental Datasets

Three PPI networks (Collins [66], Gavin [67], and Krogan [12]) were employed for
verification of the proposed algorithm. In these datasets, self-interaction and repeated inter-
action of proteins are removed. Table 1 shows detailed information on these PPI networks.

Table 1. The information of PPI networks used in this paper.

Datasets The Number of Proteins The Number of Interactions Density

Krogan 2674 7075 0.00198
Gavin 1855 7669 0.00446
Collins 1622 9074 0.00690

This study selected two standard protein complexes with high coverages to assess
protein complexes in the PPI network detected by the proposed detection algorithm.
The standard protein complexes 1 comprises known protein complexes, such as TAP06 [67],
MIPS [68], SGD [69], and ALOY [70]; the standard protein complexes 2 comprises Wodak-
database [71] and PINdb and GO complexes [72] datasets, as shown in Table 2. In most
cases, the standard protein complexes can serve as a data source as a standard dataset can
provide reliable evidence for physical interactions.

Table 2. The information of standard protein complexes used in this paper.

Datasets The Number of
Protein Complexes

The Number of
Proteins Average Size

standard protein
complexes 1 812 2773 8.92

standard protein
complexes 2 1045 2778 8.97
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The two standard protein complex datasets can be employed to effectively verify the
performance of the protein complex detection algorithm and assess the matching rate of
detected protein complexes and the protein complexes in the standard protein complexes.

3.2. Evaluation Metrics

(1) F-measure

As a harmonic mean of accuracy and recall, the F-measure is typically comprehensive
for assessment methods. Meanwhile, the F-measure can assess the overall performance of
detection methods. The F-measure is defined in Equation (22):

F-measure =
2 × precision × recall

precision + recall
. (22)

(2) Accuracy

The sensitivity can be effectively enhanced if all proteins are in the same protein
complex. Assigning these proteins to their respective protein complex can maximize the
positive predictive values. Therefore, it is essential to balance their impacts on detection
algorithms based on detection accuracy; that is, the geometric mean of sensitivity and
positive predictive value (ACC). Tij is the number of proteins. These proteins are included
in the standard protein complex Si and the detected protein complex Dj. Then, Sn and

PPV are calculated by Sn =
∑
|S|
i=1 max|I|j=1{Tij}

∑
|S|
i=1 Ni

and PPV =
∑
|D|
j=1 max|S|i=1{Tij}
∑
|D|
j=1 ∑

|S|
i=1 Tij

, respectively. ACC

is defined by Equation (23):
ACC =

√
Sn × PPV. (23)

(3) MMR

Nepusz et al. [26] proposed the MMR as an evaluation metric. Herein, a bipartite graph
reflected the matching degrees of all standard protein complexes with protein complexes
detected by the protein complex detection algorithm. Indeed, the bipartite graph comprises
standard protein complexes and detected protein complexes. According to this detection
method, a subset of the maximum weight-matching edges in this bipartite graph was
selected, and the selected edges indicate the maximum matching degree between the
standard protein complexes and the detected protein complexes. As a result, the standard
protein complex does not match any other detected protein complex, and vice versa.
The MMR of the standard and detected protein complexes is essentially the ratio of the sum
of weights of all selected edges and the number of standard protein complexes. Overall,
the proposed method can accurately and effectively assess the matching of detected protein
complexes with standard protein complexes.

(4) Coverage rate

Coverage rate (CR) [73,74] reflects the number of proteins in the standard protein
complexes covered by proteins in the detected protein complexes. A high CR indicates
many proteins in the standard protein complex covered by the protein complex detection
algorithm, suggesting good detection performance. With a standard protein complex set (S)
and a protein complex detection set (P), an optimized matching matrix (T) was established
so that each element in T denotes the number of proteins shared by the standard protein
complex and the jth detected protein complex is maximized. CR is defined by Equation (24):

CR =
∑
|S|
s=1 max{Tst}

∑
|S|
s=1 Ns

, (24)
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(5) Frac score

The Frac score [26] is used to compare the percentage of standard protein complexes
matched with detected protein complexes. Herein, S and D are the standard and predicted
protein complexes, respectively. The threshold (ω) was set to be 0.25 so that at least 50%
proteins in the standard protein complex can be the same as the matched detected protein
complex. The Frac score can be obtained by Equation (25):

Frac score =
Ns

|S| , Ns = |s|s ∈ S, ∃d ∈ D, OS(d, s) ≤ w (25)

(6) Total score

To assess the performance of protein complex detection algorithms from multiple
aspects, we consider multiple evaluation metrics, including the F-measure, ACC, MMR,
CR, and Frac, and add them to obtain the Total score, which was employed to verify
algorithm performance. Intuitively, a high Total score denotes strong recognition capability
and good performance of this algorithm. The total score can be calculated by Equation (26):

Total score = F-measure + ACC + MMR + Frac + CR. (26)

3.3. Experimental Results
3.3.1. Selection of Compared Algorithms and Parameter Setting

To compare the proposed algorithm with other compared algorithms, 12 protein com-
plex detection algorithms (including MCODE [19], CMC [20], SPICi [25], CPredictor2.0 [27],
PC2P [29], COACH [31], WPNCA [32], PEWCC [34], ICJointLE [35], SE-DMTG [36], MPC-
C [37] and ClusterEPs [41] were selected, and their datasets were aligned with the proposed
algorithm’s dataset. Meanwhile, these algorithms were applied in these datasets to detect
protein complexes in the PPI network. All parameters were set as suggested so that all
algorithms could perform rationally. Table 3 lists the parameters set.

Table 3. Parameters of each method used in the study.

ID Algorithm Parameters

1 MCODE minimum cluster size = 3 (default setting)
2 COACH w = 0.225
3 CMC min_deg_ratio = 1, min_size = 3, overlap_thres = 0.5, mergethres = 0.25
4 SPICi Graph mode = 0, minimum support threshold = 0.5, minimum cluster size = 3, minimum density threshold = 0.5
5 PEWCC Overlap = 0.8, −r = 0.1, Rejoin = 0.3
6 WPNCA lambda = 0.3, minimum cluster size = 3
7 CPredictor2.0 func_lvl = 6, Overlap threshold = 0.8, size = 3 (default setting)
8 ClusterEPs NEPs of Complexes (minimum st = 0.4,maximum st = 0.05);

NEPs of noncomplexes (maximum st = 0.05, minimum st = 0.4); maximum overlap = 0.9,Maximum size = 100
9 SE-DMTG minimum cluster size = 3
10 ICJointLE −L = 1, −r = 999, −d = 0.3, −c = 0.7, −f = 0.75, −p = 0.3; −m = 0.08, −u = 0.01, −e = 0.9, size = 3 (author suggestions)
11 MPC-C Overlap threshold = 0.8, minimum cluster size = 3
12 PC2P Minimum cluster size = 3

3.3.2. Comparison of Experimental Results Based on Statistical Metrics

Aimed at the evaluation mentioned above metrics, the performances of the DFPO
algorithm and multiple protein complex detection algorithms on two standard protein
complex datasets were determined and compared. As shown in Table 4, with standard
protein complexes, one of which is a real protein complex, MMR and CR of the proposed
DFPO algorithm in the Collins dataset were excellent; the DFPO algorithm was superior to
all other algorithms in Total score. Meanwhile, the Total score of the DFPO algorithm on the
Gavin dataset was excellent, and the DFPO algorithm was superior to all other algorithms
in terms of F-measure, MMR, and CR; the sum of the metric score (Total score) of the DFPO
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algorithm was ranked first among all algorithms involved. Additionally, the Total score of
the DFPO algorithm in the Krogan dataset was superior to those of all other algorithms; the
CR of the DFPO algorithm in the Krogan dataset was significantly superior to that of other
algorithms. Overall, the proposed algorithm was superior to most compared algorithms in
most of the evaluation metrics (especially CR) and the Total score.

Table 4. Performance of different algorithms with respect to standard protein complexes 1.

Methods Num F-Measure ACC MMR CR Frac Total Score

Collins

ClusterEPs 587 0.5386 0.2378 0.2696 0.2384 0.5778 1.8622
CMC 177 0.6326 0.3535 0.2141 0.4585 0.7022 2.3610

COACH 251 0.6452 0.3629 0.2466 0.4674 0.7178 2.4399
CPredictor2.0 237 0.6355 0.3482 0.2710 0.4652 0.6644 2.3843

ICJointLE 214 0.6238 0.2963 0.2547 0.3420 0.6667 2.1834
MCODE 111 0.5887 0.3280 0.1575 0.4072 0.5533 2.0347
MPC-C 274 0.6206 0.3351 0.2657 0.4590 0.6178 2.2981
PC2P 159 0.6466 0.3728 0.2011 0.4808 0.7000 2.4014

PEWCC 426 0.6230 0.3446 0.2930 0.4530 0.7489 2.4626
SE-DMTG 167 0.6468 0.3339 0.2343 0.4123 0.6578 2.2851

SPICi 121 0.5954 0.3451 0.1651 0.4244 0.6267 2.1567
WPNCA 269 0.6199 0.3678 0.2051 0.5222 0.6644 2.3794

DFPO 361 0.6356 0.3125 0.3052 0.5403 0.7133 2.5067

Gavin

ClusterEPs 271 0.6014 0.2841 0.2166 0.3656 0.6077 2.0754
CMC 294 0.5844 0.3487 0.2229 0.4501 0.7398 2.3458

COACH 361 0.6578 0.3266 0.2772 0.4428 0.7581 2.4625
CPredictor2.0 254 0.6268 0.3128 0.2285 0.3750 0.6037 2.1467

ICJointLE 243 0.6329 0.2989 0.2619 0.3557 0.6280 2.1774
MCODE 122 0.4864 0.3010 0.1205 0.3765 0.4411 1.7254
MPC-C 398 0.6369 0.3146 0.3068 0.4160 0.6098 2.2840
PC2P 219 0.5769 0.3551 0.1825 0.4439 0.6443 2.2026

PEWCC 664 0.6576 0.3146 0.3538 0.4316 0.7744 2.5321
SE-DMTG 214 0.6394 0.3187 0.2398 0.3769 0.6606 2.2354

SPICi 189 0.5777 0.3401 0.1693 0.4157 0.6341 2.1370
WPNCA 484 0.6428 0.3114 0.2557 0.4949 0.6504 2.3552

DFPO 549 0.6590 0.3141 0.3563 0.5254 0.7297 2.5925

Krogan

ClusterEPs 410 0.5836 0.2621 0.2209 0.3352 0.5728 1.9747
CMC 264 0.4819 0.2978 0.1584 0.3656 0.5955 1.8991

COACH 345 0.5254 0.2667 0.2151 0.3473 0.5917 1.9462
CPredictor2.0 221 0.5878 0.2793 0.2119 0.3044 0.5747 1.9581

ICJointLE 216 0.5389 0.2284 0.1936 0.2206 0.5142 1.6957
MCODE 39 0.3414 0.1994 0.0403 0.2140 0.2476 1.0427
MPC-C 456 0.5982 0.2816 0.2848 0.3760 0.5955 2.1362
PC2P 249 0.4356 0.2970 0.1337 0.3458 0.5217 1.7338

PEWCC 389 0.5244 0.2534 0.1466 0.3208 0.4216 1.6561
SE-DMTG 372 0.5878 0.2821 0.2777 0.3504 0.6730 2.1710

SPICi 224 0.4444 0.2883 0.1167 0.3315 0.5180 1.6989
WPNCA 369 0.5446 0.2758 0.1912 0.3897 0.5520 1.9533

DFPO 372 0.5346 0.2686 0.2368 0.6738 0.5501 2.2688

As shown in Table 5, the performance of different algorithms in standard protein
complexes 2 was lower than those of all algorithms in standard protein complexes 1.
This can be attributed to the fact that standard protein complex 2 contains many protein
complexes, resulting in low matching accuracy of different detection algorithms. The Total
score of the proposed DFPO algorithm was higher than those of other algorithms. On the
Gavin dataset, the proposed DFPO algorithm had relatively high scores in MMR and
CR (scores of CR and MMR were ranked first), and its Total score was more significant
than those of the compared algorithms. On the Krogan dataset, the CR score of the DFPO
algorithm was significantly larger than those of the compared algorithms, while other
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scores of the DFPO algorithm were reasonable; the Total score of the DFPO algorithm was
ranked first.

Table 5. Performance of different algorithms with respect to standard protein complexes 2.

Methods Num F-Measure ACC MMR CR Frac Total Score

Collins

ClusterEPs 587 0.4193 0.2219 0.1972 0.2154 0.4478 1.5016
CMC 177 0.4807 0.3382 0.1635 0.3901 0.5198 1.8923

COACH 251 0.4971 0.3182 0.1817 0.3961 0.5324 1.9255
CPredictor2.0 237 0.5233 0.3322 0.2097 0.4080 0.5360 2.0093

ICJointLE 214 0.4850 0.2771 0.1776 0.2832 0.4964 1.7193
MCODE 111 0.4344 0.3159 0.1251 0.3430 0.3975 1.6158
MPC-C 274 0.4971 0.3183 0.1904 0.3809 0.4730 1.8599
PC2P 159 0.5209 0.3828 0.1742 0.4318 0.5378 2.0475

PEWCC 426 0.4813 0.3178 0.2065 0.3921 0.5522 1.9499
SE-DMTG 167 0.5136 0.3256 0.1791 0.3460 0.4946 1.8589

SPICi 121 0.4396 0.3382 0.1259 0.3616 0.4496 1.7150
WPNCA 269 0.4602 0.3384 0.1596 0.4656 0.4658 1.8897

DFPO 361 0.4940 0.3154 0.2159 0.4943 0.5324 2.0518

Gavin

ClusterEPs 271 0.4331 0.2715 0.1670 0.2906 0.4696 1.6318
CMC 294 0.3803 0.3301 0.1459 0.3575 0.4936 1.7073

COACH 361 0.4190 0.3257 0.1743 0.3505 0.5046 1.7733
CPredictor2.0 254 0.4802 0.2898 0.1721 0.3076 0.4843 1.7340

ICJointLE 243 0.4861 0.2834 0.1912 0.2920 0.5046 1.7573
MCODE 122 0.3143 0.2920 0.0863 0.3002 0.3057 1.2986
MPC-C 398 0.4904 0.3189 0.2128 0.3486 0.4936 1.8642
PC2P 219 0.4025 0.3413 0.1295 0.3610 0.4512 1.6855

PEWCC 664 0.4185 0.3137 0.2152 0.3483 0.5304 1.8260
SE-DMTG 214 0.4512 0.3188 0.1644 0.2997 0.4512 1.6853

SPICi 189 0.3819 0.3237 0.1158 0.3246 0.4199 1.5658
WPNCA 484 0.4217 0.3305 0.1670 0.4116 0.4567 1.7876

DFPO 549 0.4457 0.3062 0.2225 0.4865 0.4991 1.9743

Krogan

ClusterEPs 410 0.4658 0.2390 0.1444 0.3021 0.4325 1.5839
CMC 264 0.3999 0.2732 0.1101 0.3192 0.4284 1.5308

COACH 345 0.4369 0.2441 0.1464 0.3166 0.4325 1.5765
CPredictor2.0 221 0.4918 0.2491 0.1396 0.2793 0.4353 1.5951

ICJointLE 216 0.4516 0.2147 0.1230 0.2083 0.3839 1.3815
MCODE 39 0.2317 0.1861 0.0271 0.1863 0.1405 0.7717
MPC-C 456 0.5178 0.2684 0.1911 0.3343 0.4520 1.7636
PC2P 249 0.3636 0.2884 0.0951 0.3141 0.3978 1.4589

PEWCC 389 0.4380 0.2358 0.0941 0.2950 0.2949 1.3560
SE-DMTG 372 0.5060 0.2685 0.1757 0.3093 0.5007 1.7602

SPICi 224 0.3484 0.2765 0.0818 0.2956 0.3491 1.3514
WPNCA 369 0.4361 0.2614 0.1250 0.3572 0.3936 1.5733

DFPO 372 0.4430 0.2619 0.1511 0.6374 0.3922 1.8935

In summary, the proposed algorithm exhibited high scores of CR and Total score metrics,
which means it performed excellently in detecting protein complexes in the PPI network.

4. Conclusions
The protein complex is significant to exploring life activities and bioscience, and im-

proving the rate and performance of protein complex detection is urgent. Various algo-
rithms have been proposed for detecting protein complexes in the PPI network due to
advances in science. Despite wide applications, these algorithms exhibit some limitations.
This study proposed improvement from three perspectives: (1) current methods for de-
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tecting protein complexes can barely detect overlapping protein complexes; (2) the FCM
algorithm is sensitive to the selection of the initial clustering center and initial cluster
number, and hence, the improved FCM algorithm was combined with the improved DPC
algorithm, and a novel objective function was proposed; and (3) the improved FCM al-
gorithm parameters were optimized using the adaptive parameter-adjusting algorithm.
Finally, a dozen excellent methods for detecting protein complexes were employed to
verify the effectiveness of the proposed detection algorithm. Specifically, these algorithms
were applied to multiple PPI networks and the standard protein complexes, and their
performances were assessed based on several evaluation metrics. The results demonstrated
that the proposed algorithm was superior to other algorithms in terms of detection accu-
racy. Owing to advances in attention graph neural networks and machine learning, novel
methods for detecting protein complexes will be proposed to enhance protein complex
detection accuracy further.
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Abbreviations
The following abbreviations are used in this paper:

PPI protein–protein interaction
DPC density peaks clustering algorithm
FCM fuzzy C-means clustering algorithm
ABC artificial bee colony
DFPO DPC-FCM Parameter Optimization
TAP-MS tandem affinity purification
PPIN protein–protein interaction network
WWW World Wide Web
SIO swarm intelligence optimization
MCODE molecular complex detection
CMC clustering based on maximal cliques
MCL Markov clustering
CUBCO+ minimum CUt to detect Biclique spanned subgraphs as protein Complexes+
SPICi ‘spicy’, Speed and Performance In Clustering
ClusterONE clustering with overlapping neighborhood expansion
PC2P Protein Complexes from Coherent Partition
COACH core-attachment based method
WPNCA Weighted PageRank-Nibble algorithm and core attachment structure
PEWCC PE-measure weighted clustering coefficient

SE-DMTG
Seed-Extended algorithm based on Density and Modularity
with Topological structure and GO annotations

MPC-C Mining Protein Complexes using a new Clustering model
ClusterEPs EP-based clustering score and propose a search algorithm
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ClusterSS clustering with supervised and structural information
ICSC improved cuckoo search clustering algorithm
MFO moth-flame optimization
MP-DE Markov clustering differential evolution(DE) algorithm
ISHC light synchronization-based hierarchical clustering
F-MCL MCL and its variants with Firefly algorithm

iOPTICS-GSO
improved Ordering Points to Identify the Clustering Structure (OPTICS)
algorithm with Glowworm

GSO swarm optimization algorithm
ACC accuracy
MMR maximum matching ratio
CR coverage rate
Frac Fraction
PO Parameter Optimization
MIPS Munich Information Center for Protein Sequence
SGD Saccharomyces Genome Database
TAP06 Tandem Affinity Purification06
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