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In this paper, we introduce the notion of G-liftable ideals, which extends the liftable 
ideas defined by Assem and Le Meur. We characterize the G-liftable ideals and 
construct the Galois G-coverings of quotients of categories associated to the G-
liftable ideals. In particular, we study the behavior of G-liftable admissible ideals 
under Galois G-coverings. Furthermore, we show that the ideals generated by 
finite dimensional projective modules over a locally bounded linear categories are 
admissible G-liftable ideals. As an application, we provide a reduction technique for 
dealing with the existence of Serre functors in the stable categories of Gorenstein 
projective objects.
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1. Introduction

Covering theory originated from topology theory, which is widely used in algebraic topology [15]. Covering 
technique was introduced into representation theory of algebras and developed by Riedtmann [22], Bongartz-
Gabriel [7], Gabriel [14], Dowbor-Lenzing-Skowroński [10], Martínez-Villa, de la Peña [20], Cibils-Eduardo 
[8], et al. The classical Galois covering technique has been playing an important role in the representation 
theory of finite dimensional algebras. Let F : A → B be a classical Galois covering of locally bounded linear 
categories. The most important result in classical Galois covering theory is the Gabriel’s theorem which 
shows that A is locally representation-finite if and only if B is so. This theory reduces problems of B whose 
structure is more complicated to that of A, which is easier to treat and better understood.
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Let k be an algebraically closed field. Let A be a k-linear category. Denote by A0 the objects classes of 
A. Recall that a k-linear category A is said to be locally bounded if it satisfies the following conditions:

(1) A is basic (i.e., x �= y ⇒ x � y);
(2) A is semiperfect (i.e., A(x, x) is a local algebra, ∀ x ∈ A0);
(3) For each x ∈ A0, 

∑
y∈A0

dimk A(x, y) < ∞ and 
∑

y∈A0
dimk A(y, x) < ∞.

The classical Galois covering technique requires the stringent conditions on categories, such as, categories 
are locally bounded and group action is free. It makes very inconvenient to apply the covering technique to 
usual additive categories such as the bounded derived categories of the module category or even the module 
category. To overcome these difficulties, Asashiba [2] introduced the notion of a G-precovering and called a 
dense G-precovering i.e. “G-covering”, which remove all stringent conditions on categories. He showed that 
a G-covering is a universal “G-invariant” functor.

Bautista and Liu [6] defined the notion of a Galois G-covering for general linear categories, which is a 
special kind of G-coverings. They showed that given a Galois G-covering F , a morphism f is radical if and 
only if F (f) is radical. Moreover, Darpö and Iyama [11] showed that for a Galois G-covering F : A → B
between Krull-Schmidt categories, F induces an isomorphism

⊕g∈GradA(x, gy) ∼= radB(F (x), F (y)).

From this point, the radical of A can be regarded as the “étale” of the radical of B. Based on these 
results, they showed that a Galois G-covering between Krull-Schmidt categories preserves almost split 
sequences. Recently, Asashiba, Hafezi and Vahed [1] provided G-precoverings of bounded derived categories, 
singularity categories and Gorenstein defect categories. Then they obtained a Gorenstein version of Gabriel’s 
theorem. Hafezi, Mahdavi [16] showed that there is a G-precoverings between the stable categories and 
extended naturally the push-down functor to the G-precovering between the corresponding (mono)morphism 
categories. Using these results, they gave a (mono)morphism category version of Gabriel’s theorem.

Recently, Assem and Le Meur [3] introduced the notion of F -liftable ideals with respect to the Galois 
covering functor F . They gave some characterizations of F -liftable ideals and construct the Galois coverings 
of quotients of categories associated to the F -liftable ideals.

Inspired by this notion, we aim to introduce the notion of G-liftable ideals with respect to a G-precovering 
functor F (here, “G” is a double entendre, which means both “generalization” and the group G), which 
generalizes the F -liftable ideals and can be applied to more situations. Under our settings, the concept 
contains as much as possible some well-known ideals. For example, for a Galois G-covering functor F : A →
B, the radical of B is a G-liftable ideal. Moreover, for a Galois covering functor π : A → B, it is well-known 
that the push-down functor π• : modA → modB is a G-precovering. We will show that prjB is a G-liftable 
ideal with respect to the push-down functor π•.

Note that stable categories of module categories and Gorenstein projective objects are both quotients of 
categories associated to the ideals generated by projective objects. Therefore, we aim to show that there is 
an induced Galois G-covering functor between quotients of categories associated to G-liftable ideals. Then, 
we can reprove the corresponding results in [16] and [1]. Remarkable that admissible ideal in the sense of 
[19] are closely relative to almost split morphisms and Serre functors. Thus, we also consider the behavior 
of G-liftable admissible ideals under Galois G-coverings. Using the induced Galois G-covering functor by 
G-liftable admissible ideals, we can study the existence of Serre functors for triangulated categories.

The paper is organized as follows: In Section 2, we collect some basic definitions and properties of Galois 
G-coverings. In Section 3, we introduce G-liftable ideals and give some characterizations. In Section 4, 
we discuss the behavior of G-liftable admissible ideals under Galois G-coverings. In Section 5, we give a 
class of G-liftable admissible ideals for module categories. Meanwhile, we apply the above results to get 
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the reduction technique of the existence of Serre functors in the stable categories of Gorenstein projective 
objects.

2. Preliminaries

Throughout this paper, all categories are skeletally small, and morphisms are composed from the right to 
the left. Let R be a commutative artin ring. An R-linear category (or simply, linear category) is a category in 
which the morphism sets are R-modules such that the composition of morphisms is R-bilinear. All functors 
between R-linear categories are assumed to be R-linear. An R-linear category is called additive if it has 
finite direct sums.

A linear category is called Hom-finite if the morphism modules are of finite R-length. Moreover, a Krull-
Schmidt category is an additive category in which every non-zero object is a finite direct sum of objects with a 
local endomorphism algebra. An additive category has split idempotents if every idempotent endomorphism 
φ of an object x splits, that is, there exists a factorization x u−→ y

v−→ x of φ with uv = idy and vu = φ.
The following results are well-known.

Lemma 2.1 ([17, Corollary 4.4], [9, Theorem A.1]). Let A be an additive category. The following hold.

(1) A is a Krull-Schmidt category if and only if it has split idempotents and the endomorphism ring of 
every object is semi-perfect.

(2) Suppose that A is a Krull-Schmidt category. Let u : x → y and v : y → x be morphisms in A. Suppose 
x ∼= y.
(a) If u is a retraction, then u is an isomorphism.
(b) If v is a section, then v is an isomorphism.

Proof. It is enough to show (2). Since u is a retraction, there exists a morphism v : y → x such that 
uv = idy. Let e = vu. Then both e and idx − e are idempotent endomorphisms of x. Note that A has split 
idempotents. There exists y′ ∈ A0, u′ : x → y′ and v′ : y′ → x such that v′u′ = idx−e and u′v′ = idy′ . Thus, 
x ∼= y ⊕ y′. Since A is a Krull-Schmidt category and x ∼= y, we know that y′ = 0. Therefore, vu = e = idx. 
It means that u is an isomorphism. In this case, so does v. �

Let A be a linear category equipped with an action of a group G, that is, there exists a group homomor-
phism ρ : G → Aut(A), where Aut(A) is the group of automorphisms of A. Set gx := ρ(g)(x), gf := ρ(g)(f)
for any g ∈ G, x, y ∈ A0 and f ∈ A(x, y). By abuse of notation, we identify g with ρ(g).

Definition 2.2 ([6]). Let A be a linear category with G a group acting on A. The G-action on A is called 
admissible if it satisfies the following conditions

(1) G-action is free, that is gx � x, for any indecomposable object x of A and any non-identity g ∈ G.
(2) G-action is locally bounded, that is for any indecomposable objects x, y of A, A(x, gy) = 0 for all but 

finitely many g ∈ G.

Let F : A → B be a functor between linear categories. Recall that for g ∈ G, a functorial (iso)morphism 
δg : F ◦ g → F consists of (iso)morphisms δg,x : F ◦ g(x) → F (x) for any x ∈ A0, which are natural in x.

Definition 2.3 ([2]). Let A, B be linear categories with G a group acting on A. A functor F : A → B is 
called G-stable provided there exist functorial isomorphisms δg : F ◦ g → F , with g ∈ G, such that the 
following diagram commutative
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F (hx) = F ◦ h(x)

δh,x

F ◦ gh(x) = F ◦ g(hx)

δg,hx

δgh,x

F (x)

that is δh,xδg,hx = δgh,x for any g, h ∈ G and x ∈ A0. In this case, we call δ = (δg)g∈G a G-stabilizer for F .

Remark 2.4 ([6]).

(1) By definition, δ−1
g,x = δg−1,gx for g ∈ G and x ∈ A0; δe = idF , where e is the identity of G.

(2) F is said to be G-invariant if the G-stabilizer δ satisfies δg = idF for any g ∈ G.

Definition 2.5 ([2]). Let A, B be linear categories with G a group acting on A. A functor F : A → B is 
called a G-precovering provided that F has a G-stabilizer such that, for any X, Y ∈ A0, the following two 
maps are isomorphisms:

Fx,y :
⊕
g∈G

A(x, gy) −→ B(F (x), F (y)) : (ug)g∈G �→
∑
g∈G

δg,y ◦ F (ug)

F x,y :
⊕
g∈G

A(gx, y) −→ B(F (x), F (y)) : (vg)g∈G �→
∑
g∈G

F (vg) ◦ δ−1
g,x.

Definition 2.6 ([2]). Let A, B be linear categories with G a group acting on A. A G-precovering F : A → B
is called a G-covering provided that F is dense, in sense that for any x′ ∈ B0, there exists an x ∈ A0 such 
that x′ is isomorphic to F (x) in B.

Definition 2.7 ([14]). Let A, B be locally bounded categories with G a group acting admissible on A. A 
functor F : A → B is called a Galois covering if F satisfies the following conditions.

(1) F is a G-covering.
(2) F is G-invariant.
(3) G acts transitively of the fiber F−1(x) for any x ∈ B0.

Definition 2.8 ([4]). Let A, B be linear categories with G a group acting admissible on A. A G-covering 
functor F is called Galois G-covering if F satisfies the following conditions.

(G1) If x ∈ A0 is indecomposable, then F (x) is indecomposable.
(G2) If x, y ∈ A0 are indecomposable with F (x) = F (y), then there exists some g ∈ G such that y = gx.

Remark 2.9 ([6]). If A, B are locally bounded linear categories over an algebraically closed field, then a 
Galois covering F : A → B is simply a G-invariant Galois G-covering.

Lemma 2.10 ([6]). Let A, B be linear categories with G a group acting on A and let F : A → B be a 
G-precovering with a G-stabilizer δ.

(1) For any x, y ∈ A0, we have the following decompositions

B(F (x), F (y)) =
⊕
g∈G

δg,yF (A(x, gy)) =
⊕
h∈G

F (A(hx, y))δ−1
h,x.

(2) The functor F is faithful.
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Remark 2.11. By the direct sum decompositions in Lemma 2.10 (1), for any u ∈ B(F (x), F (y)), we can 
write u =

∑
g∈G δg,yF (ug) =

∑
h∈G F (vh)δ−1

h,x, where ug ∈ A(x, gy) and vh ∈ A(hx, y) such that ug = 0
and vh = 0 for all but finitely many g and h ∈ G, respectively.

Lemma 2.12 ([6]). Let A, B be linear categories with G a group acting on A and let F : A → B be a 
G-precovering. Consider a morphism u : X → Y in A.

(1) If v : X → Z or v : Z → Y is a morphism in A, then v factorizes through u if and only if F (v)
factorizes through F (u).

(2) The morphism u is a section, retraction, or isomorphism if and only if F (u) is a section, retraction, or 
isomorphism, respectively.

Now, assume that A is an additive category. The radical radA(−, −) of A is the (two-sided) ideal of A
defined by

radA(X,Y ) := { f ∈ HomA(X,Y ) | idX − gf is invertible for each g : Y → X}

for any two objects X, Y ∈ A. A morphism f : X → Y is said to be radical if f ∈ radA(X, Y ). Furthermore, 
radA(X, X) ⊆ EndA(X) coincides with the Jocobson radical J(EndA(X)) of the ring EndA(X).

Given m ≥ 1, we recall that the m-th power radm
A (−, −) of radA(−, −) by taking for radm

A (X, Y ) the 
subspace of radA(X, Y ) consisting of all finite sums of morphisms of the form

X = X0
h1−→ X1

h2−→ X2 −→ · · · −→ Xm−1
hm−−→ Xm = Y

where hi ∈ radA(Xi−1, Xi). See [5,17,18] for more details.

Proposition 2.13 ([6, Lemma 3.1 and 3.2]). Let A, B be two additive categories with G a group acting 
admissibly on A and let F : A → B be a Galois G-covering. Then the following statements hold.

(1) Let u ∈ A(X, Y ). Then u is radical if and only if F (u) is radical.
(2) Let u ∈ B(F (X), F (Y )). In this case, one may write u =

∑
g∈G δg,Y F (ug), where ug ∈ A(X, gY ) such 

that ug = 0 for all but finitely many g ∈ G. If m is a positive integer, then u ∈ radm
B (F (X), F (Y )) if 

and only if ug ∈ radm
A(X, gY ) for all g ∈ G.

Let A be an additive category. Recall that I is said to be an ideal on A if I(x, y) is an R-submodule 
of A(x, y) and for any f ∈ I(x, y), g ∈ A(z, x) and h ∈ A(y, s), fg ∈ I(z, y) and hf ∈ I(x, s). Then the 
quotient category of A, denoted by A/I, has the same objects as A, and for any two objects x, y ∈ A0, 
A/I(x, y) := A(x, y)/I(x, y) is the quotient module of A(x, y). For f a morphism in A, we denote by 
f its residue class in the quotient category. It is obviously that the quotient category A/I is additive. 
It is well-known that if A is Hom-finite Krull-Schmidt, then A/I is also Hom-finite Krull-Schmidt and 
ind(A/I) = ind(A)\{x ∈ ind(A) | idx ∈ I(x, x)}.

Example 2.14. Let A be an additive category. I a full subcategory of A which is closed under taking direct 
sums and direct summands, (i.e., for any two objects x, y ∈ A0, x ⊕ y ∈ I if and only if x, y ∈ I) and 
I(x, y) is an R-submodule of A(x, y) consisting of morphisms factoring through some object in I. Then, in 
this case, I is an ideal on A, see [13, Lemma 4.3].

The following example is due to [12, Example 4.26].
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Example 2.15 (Ideal generated by a class of morphisms). Let

R = {ψλ : xλ → yλ | λ ∈ Λ}

be a nonempty class of morphisms in an additive category A. The ideal generated by R is the ideal I of A
defined as follows. For any x, y ∈ A0, we define the subgroup

I(x, y) = {u ∈ A(x, y) | u = Σn
i=1υiψλi

ωi, for some ψλi
∈ R, υi ∈ A(yλi

, y) and ωi ∈ A(x, xλi
)}.

The ideal generated by R is the smallest ideal I of A such that ψλ ∈ I(xλ, yλ) for every λ ∈ Λ.

3. The G-covering of quotient categories

Definition 3.1. Let Â, A be linear categories with G a group acting on Â. Assume that F : Â → A is 
a G-precovering. The ideal I on A is said to be G-liftable with respective to F , (or simply, G-liftable) if 
for any two objects x, y ∈ Â0 and u ∈ I(F (x), F (y)), then F (ug) ∈ I(F (x), F (gy)) for any g ∈ G, where 
(ug)g∈G ∈

⊕
g∈G Â(x, gy) such that u =

∑
g∈G δg,y ◦ F (ug).

Remark 3.2. If Â, A are two locally bounded k-category with G a group acting on Â and F : Â → A is a 
Galois covering, then the F -liftable ideal in sense of [3] is simply G-liftable.

Example 3.3. Let A and B be Krull-Schmidt categories with G a group acting admissibly on A. Let F :
A → B be a Galois G-covering with a G-stabilizer δ. Then, from [6, Lemma 3.1 and Lemma 3.2], radn(B) 
is G-liftable, for any integer n ≥ 1.

Proposition 3.4. Let Â, A be linear categories with G a group acting on Â, I a ideal on A. Assume that 
F : Â → A is a G-covering. The ideal I is G-liftable if and only if there exists a class of morphisms 
R ⊆

⋃
x,y∈Â0

F (Â(x, y)) such that I is generated by R.

Proof. To prove the necessity, we set the following class of morphisms

R =
⋃

g∈G,x,y∈Â0

{
F (ug) : F (x) → F ◦ g(y)

∣∣∣ u ∈ I(F (x), F (y))
}
,

where, as before, (ug)g∈G ∈
⊕

g∈G Â(x, gy), such that u = Σg∈Gδg,yF (ug). Since I is Galois G-liftable, 
each morphism as the form of F (ug) : F (x) → F ◦ g(y) in R lies in I. Then, R ⊆ I. For any two objects 
x, y ∈ A0, as F is dense, there exist two objects x′, y′ ∈ Â0, such that x ∼= F (x′) and y ∼= F (y′). 
Hence, for any morphism h ∈ I(x, y), u = ahb ∈ I(F (x′), F (y′)), where a : y → F (y′) and b : F (x′) → x are 
isomorphisms. Since F : Â → A is a G-precovering, by Lemma 2.10 (1), we may write u =

∑n
i=1 δgi,y′F (ugi), 

where g1, · · · , gn are distinct and ugi ∈ Â(x′, giy′), for 1 ≤ i ≤ n. Since I is Galois G-liftable, F (ugi) ∈
I(F (x′), Fgi(y′)) ∈ R. Then h =

∑n
i=1 a

−1δgi,y′F (ugi)b−1. It means that I is generated by R.
For the sufficiency, we assume that I is generated by R ⊆

⋃
x,y∈Â0

F (Â(x, y)). Fix a pair x, y ∈ Â0, 
and u ∈ I(F (x), F (y)). By the definition of the generated ideal and the assumption on R, there exist finite 
morphisms: ψi = F (ψ̃i) : F (xi) → F (yi) ∈ R, υi ∈ A(F (yi), F (y)) and ωi ∈ A(F (x), F (xi)) for 1 ≤ i ≤ n

such that u =
∑n

i=1 υiψiωi.
By Lemma 2.10 (1), we may write ωi =

∑m′
i

t=1 δgs,xi
F (ωi,gs), where g1, · · · , gm′

i
∈ G are distinct and 

ωi,gs ∈ Â(x, gsxi); and υi =
∑m′′

i
s=1 δht,yF (υi,ht

), where h1, · · · , hm′′
i
∈ G are distinct and υi,ht

∈ Â(yi, hty). 
Then
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υiψiωi =
( m′′

i∑
s=1

δht,yF (υi,ht
)
)
(F (ψ̃i))

( m′
i∑

t=1
δgs,xi

F (ωi,gs)
)

=
∑

1≤s≤m′′
i ;1≤t≤m′

i

δht,yF (υi,ht
)F (ψ̃i)δgs,xi

F (ωi,gs)

By the naturality of functorial isomorphism δ, we have the following commutative diagrams

F ◦ gs(xi)
δgs,xi

F◦gs(ψ̃i)

F (xi)

F (ψ̃i)

F ◦ gs(yi)
δgs,yi

F (yi)

F ◦ gs(yi)
δgs,yi

F◦gs(υi,ht )

F (yi)

F (υi,ht )

F ◦ gs(hty)
δgs,hty

F (hty)

Hence, we have the following equations

∑
1≤s≤m′′

i ;1≤t≤m′
i

δht,yF (υi,ht
)F (ψ̃i)δgs,xi

F (ωi,gs)

=
∑

1≤s≤m′′
i ;1≤t≤m′

i

δht,yF (υi,ht
)δgs,yi

F ◦ gs(ψ̃i)F (ωi,gs) (by the left square)

=
∑

1≤s≤m′′
i ;1≤t≤m′

i

δht,yδgs,htyF ◦ gs(υi,ht
)F ◦ gs(ψ̃i)F (ωi,gs) (by the right square)

=
∑

1≤s≤m′′
i ;1≤t≤m′

i

δgsht,yF ◦ gs(υi,ht
)F ◦ gs(ψ̃i)F (ωi,gs) (by F is G-stable)

=
n′∑
r=1

δkr,yF (
∑

(s,t)∈Ωr

krh
−1
t υi,ht

krh
−1
t ψ̃iωi,krh

−1
t

),

where Ωr = {(s, t)| 1 ≤ s ≤ m′′
i ; 1 ≤ t ≤ m′

i; kr = gsht} and k1, k2 · · · , kn′ are distinct. Then, we have that

u =
n∑

i=1
υiψiωi

=
n∑

i=1

n′∑
r=1

δkr,yF (
∑

(s,t)∈Ωr

krh
−1
t υi,ht

krh
−1
t ψ̃iωi,krh

−1
t

)

=
n′∑
r=1

δkr,yF (
n∑

i=1

∑
(s,t)∈Ωr

krh
−1
t υi,ht

krh
−1
t ψ̃iωi,krh

−1
t

).

Let G0 = {kr}n
′

r=1 ⊆ G. If we write u =
∑

g∈G δg,y ◦ F (ug), where (ug)g∈G ∈
⊕

g∈G Â(x, gy), as F : Â → A
is a G-precovering, then

ug =
{∑n

i=1
∑

(s,t)∈Ωr
krh

−1
t υi,ht

krh
−1
t ψ̃iωi,krh

−1
t
, for g = kr ∈ G0

0, for g ∈ G \G0

Therefore, F (ug) ∈ I(F (x), F ◦ g(y)) for any g ∈ G, since F (ψ̃i) ∈ I(F (xi), F (yi)). �



8 Y. Hu, P. Zhou / Journal of Pure and Applied Algebra 227 (2023) 107244
Example 3.5. Let Q be a finite connected acyclic quiver and k be an algebraically closed field. Denote by 
D = Db(kQ) the bounded derived category of the finite dimensional (left) kQ-modules, [1] the shift functor 
in D and τ the AR-translation in D. Then g = τ−1[1] is an auto-isomorphism of D. Set G = 〈g〉. The orbit 
category C = D/G is so-called cluster categories. Its objects are the G-orbits of the objects in D. For each 
X ∈ D0, we denote by X̃ = (giX)i∈Z its G-orbit. See the following diagram, which is an Auslander-Reiten 
quiver of D

where the same color dots are in same G-orbits. It is well-known that the projection functor π : D → C is 
a G-invariant Galois G-covering, which sends each X ∈ D0 to its G-orbit. Let I = addT̃ with T̃ a cluster 
tilting object in C. Clearly I is generated by the set R consisting of all identity morphisms of objects in 
addT̃ . It is easy to see that R ⊆

⋃
T0∈addT {π(HomD(T0, T0))}. Hence, I is a G-liftable ideal.

Now, let Â, A be linear categories with G a group acting on Â, F : Â → A be a G-precovering. Assume 
that I is a G-liftable ideal on A. Then for any x, y ∈ Â0 and g ∈ G, we construct the following subgroup 
of Â(x, gy),

Î(x, gy) = {u ∈ Â(x, gy) | F (u) ∈ I(F (x), F ◦ g(y))}.

Now, we set

Î =
⋃

g∈G,x,y∈Â0

Î(x, gy). (3.1)

For any f ∈ Â(a, x) and h ∈ Â(gy, b), since I is an ideal, F (huf) = F (h)F (u)F (f) ∈ I(F (a), F (b)) for any 
u : x → gy ∈ Î. Thus, huf ∈ Î(a, b). It means that Î is an ideal on Â. Since F is a G-precovering and I is 
a G-liftable ideal, F induces the following abelian groups isomorphism

Fx,y|Î :
⊕
g∈G

Î(x, gy) → I(F (x), F (y)) : (ug)g∈G �→
∑
g∈G

δg,yF (ug).

In this case, F : Â → A induces a functor F̃ : Â/Î → A/I and the following exact diagram commutes

Î Â
πÂ

F

Â/Î

F̃

I A
πA A/I

(3.2)

where πÂ and πA are the canonical projection functors.
Moreover, we have the following consequence.

Corollary 3.6. Let Â, A be linear categories with G a group acting on Â. Assume that F : Â → A is a 
G-precovering and I is ideal of A. Then I is G-liftable if and only if there is an ideal Î of Â such that F
induces the following abelian groups isomorphism



Y. Hu, P. Zhou / Journal of Pure and Applied Algebra 227 (2023) 107244 9
Fx,y|Î :
⊕
g∈G

Î(x, gy) → I(F (x), F (y)) : (ug)g �→
∑
g∈G

δg,yF (ug), (3.3)

for any x, y ∈ A0.

Denote by x the image of object x under the canonical projection functor of linear category. Then the 
G-action on Â induces the G-action on the quotient category Â/Î, defined by gx � gx and gf � gf for any 
x ∈ Â0 and f ∈ A. Note that F is a G-stable with a G-stabilizer δ = (δg)g∈G, where each δg : F ◦ g → F is 
a functorial isomorphism. Then for each g ∈ G, there exists a functorial isomorphism δ̃g : F̃ ◦ g → F̃ such 
that δ̃g,x = δg,x for any x ∈ Â0. In this case, for any g, h ∈ G, and x ∈ (Â/Î)0 we have that

δ̃h,xδ̃g,hx = δh,xδg,hx = δgh,x = δ̃gh,x.

Thus, F̃ : Â/Î → A/I is G-stable with a G-stabilizer δ̃ = (δ̃g)g∈G. In particular, if F is G-invariant, then 
so does F̃ . Moreover, if F is dense, for any x ∈ (A/I), then there exists x′ ∈ Â0, such that F (x′) ∼= x. By 
the right commutative square of (3.2), F̃ (πÂ(x′)) = πA(F (x′)) ∼= πA(x) = x. It follows that F̃ is dense. 
Hence, by the above observations, we have the following result.

Proposition 3.7. Let Â, A be linear categories with G a group acting on Â, F : Â → A be a G-precovering. 
Assume that I is a G-liftable ideal on A. Then there exists an ideal Î on Â satisfying the isomorphism (3.3)
and a G-precovering functor F̃ : Â/Î → A/I, such that the following diagram commutes.

Â
πÂ

F

Â/Î

F̃

A
πA A/I

Moreover, if F is G-covering, then so does F̃ .

Proof. By the above discussions, it suffices to show that F̃x,y is an isomorphism. For any x, y ∈ Â0 and 
g ∈ G, we have the following commutative diagram with exact rows

0
⊕

g∈G Î(x, gy)

Fx,y|Î

⊕
g∈G Â(x, gy)

Fx,y

⊕
g∈G Â/Î(x, gy)

F̃x,y

0

0 I(F (x), F (y)) A(F (x), F (y)) A/I(F (x), F (y)) 0

where the third vertical arrow is induced by F̃ . Because by the construction of Î, Fx,y|Î is an isomorphism. 
As Fx,y is an isomorphism, so does F̃x,y. �
Lemma 3.8. Let Â, A be Hom-finite Krull-Schmidt categories with G a group acting admissibly on Â, 
F : Â → A be a G-precovering. Then G-action on Â/Î is also admissible, where Î is an ideal of Â.

Proof. Note that ind(Â/Î) = ind(Â)\{x ∈ ind(Â) | idx ∈ Î(x, x)}. Assume that x is an indecomposable 
object in Â/Î, where x ∈ ind(Â). For any non-identity g ∈ G, we claim that gx � x. If not, then there 
exists an isomorphism f : gx → x with inverse h : x → gx. Thus, fh− idx = 0 and hf − idgx = 0 that is 
fh − idx ∈ Î(x, x) and fh − idgx ∈ Î(gx, gx). Note that x is an indecomposable object of Â and so does gx. 
Since Â is Krull-Schmidt, End ̂(x) is a local R-algebra. Hence, the Jacobson radical radEnd ̂(x) is the unique 
A A
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maximal ideal of EndÂ(x). Since Î is an ideal, Î(x, x) is an ideal of EndÂ(x). Then, Î(x, x) ⊆ radEndÂ(x). 
By the assumption on Â, Â is Hom-finite. It follows that radEndÂ(x) is nilpotent. Then there exists some 
non-negative integer n such that (fh − idx)n = 0. Set k = fh. Then,

n∑
i=0

(−1)i
(
n

i

)
kn−i = 0,

where k0 = idx. Then f(
∑n−1

i=0 (−1)i−n−1 ( n
i

)
hkn−i−1) = idx. By the similar arguments, we have the 

equation (
∑n−1

i=0 (−1)i−n−1 ( n
i

)
k′n−i−1h)f = idgx where k′ = hf . Hence, f : gx → x is an isomorphism. It 

leads to a contradiction since the G-action on Â is free. Hence, the G-action on Â/Î is free.
At last, for any x, y ∈ ind(Â/Î) and g ∈ G, there is a surjective Â(x, gy) → Â/Î(x, gy). Since G-action 

on Â is locally bounded, Â/Î(x, gy) = 0 for all but finitely many g ∈ G. It means that the G-action on 
Â/Î is locally bounded. This completes the proof. �
Theorem 3.9. Let Â, A be Hom-finite Krull-Schmidt categories with G a group acting admissibly on Â, 
F : Â → A be a Galois G-covering. Assume that I is a G-liftable ideal on A. Then there is a Galois 
G-covering F̃ : Â/Î → A/I, such that the following diagram commutes,

Â
πÂ

F

Â/Î

F̃

A
πA A/I

where Î is an ideal of Â satisfying the isomorphism (3.3).

Proof. By Proposition 3.7 and Lemma 3.8, it is enough to show that F̃ satisfies the conditions (G1) and 
(G2) of Definition 2.8.

Assume that x is an indecomposable object in Â/Î, where x ∈ ind(Â). For (G1), it suffices to show that 
EndA/I(F̃ (x)) is a local R-algebra since A/I is Krull-Schmidt. Since EndA/I(F̃ (x)) = HomA(F (x),F (x))

I(F (x),F (x)) , we 

know that rad(EndA/I(F̃ (x))) = rad
(
HomA(F (x),F (x))

)
I(F (x),F (x)) . It follows that EndA/I(F̃ (x))/rad(EndA/I(F̃ (x))) ∼=

EndA(F (x))/rad(EndA(F (x))) is a division algebra since F (x) is indecomposable and A is Krull-Schmidt. 
Thus, EndA/I(F̃ (x)) is a local algebra.

For (G2), we suppose that x, y ∈ ind(A/I) with F̃ (x) ∼= F̃ (y), where x, y ∈ ind(A). Then there exist 
isomorphisms f : F (x) → F (y) and h : F (y) → F (x) such that hf = idF (x) and fh = idF (y). Then, 
hf − idF (x) ∈ I(F (x), F (x)) and fh − idF (y) ∈ I(F (y), F (y)). Since F satisfies (G1), F (x) and F (y) are 
indecomposable. Thus, I(F (x), F (x)) ⊆ rad(EndA(F (x))) and I(F (y), F (y)) ⊆ rad(EndA(F (y))). Since A
is Hom-finite, rad(EndA(F (y))) and rad(EndA(F (x))) are nilpotent. It implies that there exist two non-
negative integers n and m, such that (fh − idF (y))n = 0 and (hf − idF (x))m = 0, and consequently, 
f : F (x) → F (y) is an isomorphism. Since F satisfies (G2), there exists g ∈ G such that y = gx. In this 
case, we can see that y = gx. �
Corollary 3.10 ([3, Proposition 2.3]). Let Â, A be locally bounded categories over a field with G a group 
acting admissibly on Â, F : Â → A be a Galois covering. Assume that I is a F -liftable ideal of A. Then 
there is a Galois covering F̃ : Â/Î → A/I, where Î is same as (3.1).

Proof. Since Â, A are two locally bounded categories, both Â and A are Hom-finite Krull-Schmidt linear 
categories. Since F : Â → A is a Galois covering, F is a G-invariant Galois G-covering and the G-action on 
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Â. In this case, F -liftable ideal I is just G-liftable ideal. Hence, by Theorem 3.9, there exists a G-invariant 
Galois G-covering F̃ : Â/Î → A/I. For any x ∈ ind(A/I), as F̃ is dense, there exists x′ ∈ (Â/Î)0 such 
that F̃ (x′) ∼= x. Moreover, by Lemma 2.10 (2), x′ ∈ ind(Â/Î) and even the fiber F̃−1(x) ⊆ ind(Â/Î). 
For any g ∈ G, since F̃ is G-invariant, F̃ (gx′) = F̃ (x′). Hence, the G-orbit (gx′)g∈G ⊆ F̃−1(x). For any 
y ∈ F̃−1(x), there exists an isomorphism F̃ (x′) ∼= F̃ (y). Since F̃ satisfies (G2), there exists some g ∈ G such 
that y = gx′. Thus, the fiber F̃−1(x) is just the G-orbit of x. It means that G acts transitively of the fiber
F̃−1(x). Therefore, F̃ is a Galois covering. �

Recall that each path algebra kQ over field k can be regard as a k-linear category. Its objects in kQ are 
just the vertexes of Q, morphisms from vertex x to y are same as paths from x to y, and the composition 
of any two morphisms is the composition of two paths.

Example 3.11. Let kQ̃ and kQ be two path algebras over a field k, where the quiver Q̃ is given by

x−1

γ−1

α−1
x0

γ0

α0
x1

γ1

α1

· · · y−1 β−1
y0 β0

y1 β0
· · ·

z−2 z−1 z0 z1

and Q is given by

x
α

γ y

β

z

Then there is a natural G-action ρ : Z → Aut(kQ̃) on kQ̃, given by ρ(n)(vi) = vi+n and ρ(n)(fi) = fi+n

for any vi ∈ {xi, yi, zi | i ∈ Z} and fi ∈ {αi, βi, γi, αiβi | i ∈ Z}. We define a linear functor π : kQ̃ → kQ as 
follows. For each vi ∈ {xi, yi, zi | i ∈ Z} and fi ∈ {αi, βi, γi, αiβi | i ∈ Z}, π(vi) = v and π(fi) = f where 
v ∈ {x, y, z} and f ∈ {α, β, γ, αβ}. It is easy to see that π is a Galois G-covering. Consider I as a two-sided 
ideal of kQ, for any pair a and b ∈ {x, y, z}

I(a, b) =
{

k〈αβ〉, a = x and b = z;
0, otherwise.

Then αβ is the generator of I. Obviously, αβ ∈
⋃

xi,zi
π(HomkQ̃(xi, zi)). Thus, I is a G-liftable ideal of kQ. 

Moreover,

Ĩ(ai, bi) =
{

k〈αiβi〉, ai = xi and bi = zi;
0, otherwise.

It is easy to see that π induces the isomorphism πai,bi |Ĩ :
⊕

g∈Z Ĩ(ai, gbi) → I(π(ai), π(bi)). Thus, we have 

the Galois G-covering π̃ : kQ̃/Ĩ → kQ/I.
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4. Admissible ideals

Let A be an additive category. Set f : x → y be a morphism in A. Recall that f is said to be left minimal
if every factorization f = hf implies that h is an automorphism of X; and left almost split if f is not a 
section and for every non-section morphism g : x → z, there is a morphism g′ : y → z such that g′f = g. 
A morphism f : x → y is called a source morphism if f is both left minimal and left almost split. Dually, 
one can define the notions of right minimal, right almost split and sink morphism. Recall that f : x → y

is irreducible if f is neither a section nor a retraction while every factorization f = gh implies that g is a 
section or h is a retraction.

A pseudo-cokernel of f is a morphism g : y → z such that for all a ∈ A the sequence of abelian groups

A(z, a) g∗

−→ A(y, a) f∗

−→ A(x, a)

is exact. The concept of pseudo-kernel is defined dually. A short sequence in A is a sequence of two morphisms

η : x u−→ y
v−→ z

which is called pseudo-exact if u is a pseudo-kernel of v, while v is a pseudo-cokernel of u. The pseudo-exact 
sequence η is said to be an almost split sequence if u is a source morphism and v is a sink morphism.

In [19], under the settings of Hom-finite and Krull-Schmidt, Liu introduces the notions of admissible 
ideal, pseudo-projective (pseudo-injective) and Auslander-Reiten category. Here, in this section, we modify 
his definitions without the Hom-finite restriction.

Definition 4.1 ([19]). Let A be a Krull-Schmidt category. An ideal I of A is called admissible provided that 
it satisfies the following conditions.

(1) If x, y are indecomposable objects in A with idx /∈ I(x, x) and idy /∈ I(y, y), then I(x, y) ⊆ rad2(x, y).
(2) If f : x → y is a source morphism in A with idx /∈ I(x, x), then every g ∈ I(x, z) can be written as 

g = hf with h ∈ I(y, z).
(3) If f : x → y is a sink morphism in A with idy /∈ I(y, y), then every g ∈ I(z, y) can be written as g = fh

with h ∈ I(z, x).

Example 4.2 ([19]). Let A be a Hom-finite Krull-Schmidt category.

(1) The infinite radical rad∞(A) =
⋂

n≥1 radn(A) of A is an admissible ideal.
(2) If B is a subcategory of A closed under summands, then the ideal of the morphisms factoring through 

objects in B is admissible.

Proposition 4.3. Let Â, A be Krull-Schmidt categories with G a group acting admissibly on Â, F : Â → A
be a Galois G-covering. Assume that I is a G-liftable ideal on A. Then I is admissible if and only if Î is 
admissible.

Proof. Necessity. Let I be an admissible ideal on A. For any indecomposable objects x, y ∈ Â, we assume 
that idx /∈ Î(x, x) and idy /∈ Î(y, y). Then idF (x) /∈ I(F (x), F (x)) and idF (y) /∈ I(F (y), F (y)). Thus, for any 
u ∈ Î(x, y), F (u) ∈ I(F (x), F (y)) ⊆ rad2

A(F (x), F (y)) since I is an admissible ideal. By Proposition 2.13
(2), we know that u ∈ rad2

Â(x, y).
Assume that f : x → y is a source morphism in Â with idx /∈ Î(x, x). Then idF (x) /∈ I(F (x), F (x)). More-

over, by [6, Proposition 3.5], F (f) is a source morphism in A. Then for any u ∈ Î(x, z), F (u) ∈ I(F (x), F (z))
can be written as F (u) = hF (f) with h ∈ I(F (y), F (z)). That is F (u) factorizes through F (f). We may 
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write h =
∑n

i=1 δgi,zF (hi), where g1, g2, · · · , gn are distinct, and hi ∈ Î(y, giz). By Lemma 2.12, u factorizes 
through f by some hi.

Similarly, one can check the condition (3) in Definition 4.1.
Sufficiency. Assume that Î is an admissible ideal on Â. Let x, y be two indecomposable objects of A

with idx /∈ I(x, x) and idy /∈ I(y, y). Since F is dense, there exist indecomposable objects x′ and y′ ∈ Â
such that x ∼= F (x′) and y ∼= F (y′). In this case, I(x, x) ∼= I(F (x′), F (x′)) and I(y, y) ∼= I(F (y′), F (y′)). 
It is easy to see that idx′ /∈ Î(x′, x′) and idσy′ /∈ Î(σy′, σy′) for any σ ∈ G. Since Î is an admissible ideal, 
Î(x′, σy′) ⊆ rad2

Â(x′, σy′), for any σ ∈ G. Since I is a G-liftable ideal on A, for any u ∈ I(F (x′), F (y′)), 
we write u =

∑
σ∈G δσ,y ◦ F (uσ), where uσ ∈ Î(x′, σy′) such that uσ = 0 for all but finitely many σ ∈ G. 

Then, uσ ∈ rad2
Â(x′, σy′) and so, u ∈ rad2

A(F (x′), F (y′)) by Proposition 2.13 (2).
Suppose that f : x → y is a source morphism in A with idx /∈ I(x, x). Then x is indecomposable. 

Since F is dense, there exists an indecomposable object x′ ∈ Â such that x ∼= F (x′). It is easy to see that 
idx′ /∈ Î(x′, x′). Set v ∈ I(F (x′), F (z)) for any z ∈ Â. We write v =

∑
σ∈G δσ,z ◦F (vσ), where vσ ∈ Î(x′, σz)

such that vσ = 0 for all but finitely many σ ∈ G.
If y = 0, then f = 0. Then f = F (0)θ, where 0 : x′ → 0 and θ : x → F (x′) is an isomorphism. Since f is 

a source map, 0 : x′ → 0 is a source map by [6, Proposition 3.5]. Thus, for any morphism φ ∈ Î(x′, σz), φ
factorizes through 0 : x′ → 0 since Î is admissible. It follows that vσ factorizes through 0 : x′ → 0 and so, 
vσ = 0. Then, v = 0 and hence, v factorizes through f .

Otherwise, suppose that y �= 0. Set f ′ = fθ−1 where θ : x → F (x′) is an isomorphism. Then f ′ is a 
source map. We claim that the source map f ′ : F (x′) → y is irreducible. Clearly, it is neither a section nor 
a retraction. Assume that f ′ = ht, where h : z′ → y and t : F (x′) → z′ with t is not a section. Since f ′ is 
left almost split, there exists a morphism s : y → z′ such that the following diagram commutates.

F (x′)
f ′

t

y

s

z′

h

Then f ′ = hsf ′. Since y �= 0 and f ′ is left minimal, hs is a nonzero automorphism of y. Hence, h is a 
retraction. It follows that f ′ is irreducible.

By [6, Proposition 3.4], there is an irreducible morphism u : x′ → y′ such that F (y′) ∼= y. From [6, 
Proposition 3.3], F (u) : F (x′) → F (y′) is an irreducible morphism. Since f ′ is a source map and F (u) is not 
a section, there is a morphism w : y → F (y′) such that F (u) = wf ′. Note that f ′ is not a section. Thus, w
is a retraction. Since A is Krull-Schmidt category, w is an isomorphism by Lemma 2.1. It implies that F (u)
is a source map. From [6, Proposition 3.5], u is a source map.

Since Î is admissible, vσ ∈ Î(x′, σz) factorizes through u. That is, for each σ ∈ G, there is a morphism 
hσ such that vσ = hσu, where hσ ∈ Î(y′, σz). Thus, we have that

v =
∑
σ∈G

δσ,z ◦ F (vσ)

=
∑
σ∈G

δσ,z ◦ F (hσ)F (u)

= (
∑
σ∈G

δσ,z ◦ F (hσ))F (u)

= (
∑
σ∈G

δσ,z ◦ F (hσ))wf ′

= (
∑
σ∈G

δσ,z ◦ F (hσ))wfθ−1.
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Thus, each morphism in I(x, z) factorizes through f and 
∑

σ∈G δσ,z ◦ F (hσ) ∈ I.
By the similar arguments, we can prove that I satisfies condition (3) of in Definition 4.1. �

Definition 4.4 ([19]). Let A be a Krull-Schmidt category. An object x ∈ A is called pseudo-projective if 
there exists a sink monomorphism w → x, and dually, pseudo-injective if there exists a source epimorphism 
x → v.

Remark 4.5. In fact, if A is an abelian category, then the pseudo-projective (pseudo-injective) object co-
incides with the indecomposable projective (injective) with a unique maximal subobject (quotient object), 
see [19, Proposition 2.4].

Lemma 4.6. Let Â, A be linear categories with G a group acting on Â, the functor F : Â → A be a G-
covering. Then u : x → y is an epimorphism (resp. a monomorphism) if and only if F (u) is an epimorphism 
(resp. a monomorphism).

Proof. Necessity. Assume that u is an epimorphism. Suppose that hF (u) = 0 for h : F (y) → z. Since 
F is dense, there exists z′ ∈ Â such that z ∼= F (z′). Let α : z → F (z′) be the isomorphism. Then 
αh ∈ A(F (y), F (z′)). By Lemma 2.10 (1), we may write αh =

∑n
i=1 δgi,z′F (hgi), where g1, g2, · · · , gn are 

distinct, and hgi ∈ Â(y, giz′). Then 0 = αhF (u) =
∑n

gi∈G δgi,z′F (hgi)F (u) =
∑n

i=1 δgi,z′F (hgiu). Thus, for 
any 1 ≤ i ≤ n, we have δgi,z′F (hgiu) = 0, and hence, hgiu = 0 since F is faithful. Since u is an epimorphism, 
hg = 0. Hence, αh = 0 and so, h = 0. It implies that F (u) is an epimorphism.

Sufficient. Assume that F (u) is an epimorphism. Let hu = 0 for h ∈ Â(y, Z). Then F (h)F (u) = 0 and 
hence, F (h) = 0. Thus, h = 0 since F is faithful. It means that u is an epimorphism.

Similarly, one can prove the dual statement. �
Proposition 4.7. Let Â, A be Krull-Schmidt categories with G a group acting admissibly on Â, F : Â → A
be a Galois G-covering. Then an object x in Â is pseudo-projective or pseudo-injective if and only if F (x)
is pseudo-projective or pseudo-injective in A.

Proof. Necessity. If x in Â is pseudo-projective, then there is a sink monomorphism u : w → x. Thus, by 
[6, Proposition 3.5] and Lemma 4.6, F (u) is a sink monomorphism. Thus, F (x) is pseudo-projective

Sufficiency. Suppose F (x) is pseudo-projective in A. Then there is a sink monomorphism u : w → F (x). 
If w = 0, then F (0) = 0 = u, where 0 : 0 → x. By [6, Proposition 3.5] and Lemma 4.6, 0 : 0 → x is a sink 
monomorphism. If w �= 0, then u is an irreducible map by [23, Proposition 3.14]. From [6, Proposition 3.4], 
there is an irreducible morphism u′ : w′ → x such that F (w′) ∼= w. Then F (u′) is an irreducible morphism 
by [6, Proposition 3.3]. Let α : w → F (w′) be an isomorphism. Note that F (u′)α is not a retraction. Thus, 
there is a morphism ρ : w → w such that F (u′)α = uρ. Since F (u′)α is an irreducible morphism and u
is not a retraction, ρ is a section. Since Â is Krull-Schmidt category, ρ is an isomorphism by Lemma 2.1. 
Therefore, F (u′) is a sink monomorphism since u is a sink monomorphism. It follows that u′ : w′ → x is a 
sink monomorphism by [6, Proposition 3.5] and Lemma 4.6. Therefore, x is pseudo-projective. �

We recall that a triangulated category C is said to be triangle-connected if it can not be decomposed as a 
product of two non-zero triangulated categories; and triangle-simple if it admits exactly one indecomposable 
object up to isomorphism and shift, and the non-zero morphisms between indecomposable objects are 
isomorphisms. For example, the bounded derived category Db(modk) is triangle-simple, where k is a field.

Corollary 4.8. Let Â, A be Hom-finite Krull-Schmidt triangle-connected triangulated categories with G a 
group acting admissibly on Â, F : Â → A be a Galois G-covering. Then Â is triangle-simple if and only if 
A is triangle-simple.
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Proof. It comes from [19, Proposition 6.2] and Proposition 4.7. �
Definition 4.9 ([19,23]). Let A be a Krull-Schmidt category. We call A a left Auslander-Reiten category if, 
for every indecomposable z ∈ A, either z is pseudo-projective or it is the last term of an almost split sequence 
in A. Dually, A is a right Auslander-Reiten category if, for every indecomposable x ∈ A, either x is pseudo-
injective or it is the first term of an almost split sequence. If A is both a left and right Auslander-Reiten 
category, then we simply call A an Auslander-Reiten category.

Example 4.10 ([19]).

(1) If A be an artin algebra then mod A, the category of finitely generated right A-modules, is an Auslander-
Reiten category.

(2) If k is an algebraically closed field, then the category of coherent sheaves over Pn(k) with n > 1 can be 
exhausted an ascending chain of left Auslander-Reiten categories.

(3) The finite dimensional representation of the infinite quiver

· · · → n → · · · → 2 → 1

over a field from a right Auslander-Reiten category.

Corollary 4.11. Let Â, A be Krull-Schmidt categories with G a group acting admissibly on Â, F : Â → A be 
a Galois G-covering. Then Â is a (left, right) Auslander-Reiten category if and only if A is a (left, right) 
Auslander-Reiten category.

Proof. For the necessity, we suppose that x is an indecomposable object of A. Since F is dense, there exists 
an indecomposable object x′ ∈ Â, such that F (x′) ∼= x. By the assumption, if Â is a left Auslander-Reiten 
category, then x′ is pseudo-projective or it is the last term of an almost split sequence in Â. Then by 
Proposition 4.7 and [6, Theorem 3.7 (2)], we know that F (x′) is pseudo-projective or it is the last term of 
an Auslander-Reiten sequence in A. Thus, A is a left Auslander-Reiten category. Similarly, we can prove 
that A is a right Auslander-Reiten category if Â is a right Auslander-Reiten category.

For the sufficiency, since F is a Galois G-covering, F sends indecomposable objects to indecomposable 
objects. The rest part of proof comes from the sufficient of Proposition 4.7 and [6, Theorem 3.7 (2)]. �
Corollary 4.12. Let Â, A be Hom-finite Krull-Schmidt categories with G a group acting admissibly on Â, 
F : Â → A be a Galois G-covering. Assume that I is a G-liftable admissible ideal on A, considering the 
following statements.

(1) Â is a (left, right) Auslander-Reiten category.
(2) A is a (left, right) Auslander-Reiten category.
(3) Â/Î is a (left, right) Auslander-Reiten category.
(4) A/I is a (left, right) Auslander-Reiten category.

If (1) or (2) holds, then the other statements hold.

Proof. It follows from Proposition 4.3, Corollary 4.11, Corollary 4.13 and [19, Proposition 2.9]. �
Let k be an algebraically closed field. We denote D = Homk(−, k) : modk → modk by the standard 

k-duality. Let C be a Hom-finite Krull-Schmidt k-linear triangulated category. Recall from [21] that a right 
Serre functor is an additive functor S : C → C together with a natural isomorphism DC(X, −) ∼= C(−, SX)
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for any X ∈ C. A right Serre functor is said to be Serre if it is an equivalence. Dually, one can define the 
left Serre functor.

From [21], we know that C is a left (right) Auslander-Reiten category if and only if C admits a right (left) 
Serre functor. Thus, by Corollary 4.11, we have the following result, which was proved in [6].

Corollary 4.13. Let Â, A be Hom-finite Krull-Schmidt triangulated categories with G a group acting admis-
sibly on Â, F : Â → A be a Galois G-covering. Then Â admits a (left, right) Serre functor if and only if A
admits a (left, right) Serre functor.

5. Application

Let C be an additive category. We recall from [6] that C has direct sums provided that any set-indexed 
family of objects in C has direct sum. Let {Xi}i∈I be a family of objects in C, where I is an indexed set. 
If C has direct sums, then the direct sum of {Xi}i∈I exists with canonical injection qj : Xj → ⊕i∈IXi. 
By definition of the direct sum, there is a unique morphism pj : ⊕i∈IXi → Xj , for each j ∈ I, called 
pseudo-projection, such that

piqj =
{

idXi
, i = j;

0, i �= j,
(5.1)

for all i, j ∈ I. Recall that an object M ∈ C is called essential in ⊕i∈IXi provided that for any morphism 
f : M → ⊕i∈IXi, that f = 0 if and only if pjf = 0 for all j ∈ I. If every object in C is essential in ⊕i∈IXi, 
then ⊕i∈IXi is called an essential direct sum. C has essential direct sums if each family of objects has an 
essential direct sum.

In what follows, we always assume that A is a locally bounded linear category over an algebraically closed 
field k. We define the category of left A-modules, denoted by ModA, to be the covariant functors category. 
It is well known that ModA has essential direct sums, see [6, Lemma 1.2].

For any x ∈ A0, the representable functor P [x] = A(x, −) is a projective A-module in ModA. Moreover, 
ModA has enough projective modules that is for any M ∈ ModA, there is an epimorphism P → M , where 
P is a projective A-module. We say that a left A-module M is finite dimensional if 

∑
x∈A0

dimk M(x) is 
finite. We denote by modA the full additive subcategory ModA consisting of all finite dimensional modules. 
It is well-known that both ModA and modA are abelian categories. Moreover, modA is a Hom-finite Krull-
Schmidt category. Since A is locally bounded, each projective A-module P [x] is finite dimensional and each 
left A-module M in modA has a projective cover P → M , where P is a finite dimensional projective left 
A-module. It means that each finite dimensional module is finitely generated.

Let M be an A-module in ModA. We denote by

suppM = {x ∈ A0|M(x) �= 0},

the support of M . Let x be an object of A. Ax denotes the full subcategory of A formed by the objects 
of all suppM , where M is indecomposable and M(x) �= 0. A locally bounded k-linear category A is called 
locally support finite if for every x ∈ A0, Ax is finite.

The full subcategory of ModA consisting of projective objects is denoted by PrjA. Note that an A-module 
P is projective if and only if P is isomorphic to a direct summand of a direct sum of representable functors 
P [x] where x ∈ A0. The full subcategory of PrjA consisting of finitely generated projective A-modules is 
denoted by prjA.

Let G be a group. The G-action on A induces a G-action on ModA. Fix g ∈ G. Regarding g as the 
automorphism of A, each left A-module M , one can define g · M = M ◦ g−1 : A → Modk and for any 
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morphism f ∈ HomA(M, N), one can define g ·f : g ·M → g ·N given by g ·f(x) = f(g−1x) for any x ∈ A0. 
In particular, g ·P [x] = P [gx], for any x ∈ A0 and g ∈ G. If the G-action on A is free, then the G-action on 
modA is locally bounded, see [6, Lemma 6.2]. In this case, by [6, Proposition 1.3], for any module M and 
N ∈ modA, there is a canonical morphism

νM,N : ⊕g∈GmodA(M, gN) → ModA(M,⊕g∈GgN). (5.2)

Such that for any ug ∈ modA(M, gN), νM,N (ug) = qg ◦ ug and for any f ∈ ModA(M, ⊕g∈GgN), f =
νM ((pgf)g∈G).

By Bongartz and Gabriel’s classical construction in [7], we know that each G-invariant Galois G-covering 
π : A → B induces an adjoint triple (π•, π•, π�) between ModA and ModB. We will describe (π•, π•) 
explicitly.

Now, we assume that the G-action is free. Let π : A → B be a G-invariant Galois G-covering. Follows 
Bongartz and Gabriel’s classical construction in [7], we recall the push-down functor

π• : ModA → ModB.

For any M ∈ ModA, the left B-module π•(M) is defined as follows. For any b ∈ B0,

π•(M)(b) := ⊕a∈π−1(b)M(a),

where π−1(b) = {a ∈ A0|π(a) = b}. Let α : x → y a morphism in B. Since π : A → B is a G-invariant Galois 
G-covering, for any a ∈ π−1(x), there is an isomorphism

⊕b∈π−1(y)A(a, b) ∼= B(x, y)

induced by π. For each pair (a, b) ∈ π−1(x) × π−1(y), there is a unique family {αb,a : a → b}b∈π−1(y) such 
that 

∑
b∈π−1(y) π(αb,a) = α. Then one defines

π•(M)(α) := (M(αb,a))(b,a)∈π−1(y)×π−1(x) : ⊕a∈π−1(x)M(a) → ⊕b∈π−1(y)M(b).

For any morphism f : M → N in ModA, one defines π•(f) : π•(M) → π•(N) as follows

π•(f)(b) := diag{f(x)|x ∈ π−1(b)} : ⊕x∈π−1(b)M(x) → ⊕x∈π−1(b)N(x).

From [7,14] and [6, Lemma 6.3], follows that the Push-down functor π• : ModA → ModB is exact and 
admits a G-stabilizer δ. For any g ∈ G and M ∈ ModA, the functorial isomorphism δg,M : π•(g·M) → π•(M)
is defined as follows. For any b ∈ B0, one defines

δg,M (b) := (εy,x)(y,x)∈π−1(b)×π−1(b) : ⊕x∈π−1(b)M(g−1x) → ⊕y∈π−1(b)M(y),

where εy,x : M(g−1x) → M(y) is a k-linear map such that

εy,x =
{

idy, g−1x = y;
0, otherwise.

Moreover, π•(P [x]) = P [π(x)] for any x ∈ A0.
Now, we recall the pull-up functor, denoted by

π• : ModB → ModA,
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which is both an exact functor and a right adjoint functor of π•. For any N ∈ ModB, π•(N) = N ◦ π. 
For any f : M → N in ModB and x ∈ A0, π•(f)(x) = f(π(x)). By the definition of π• and π : A → B
is a G-invariant Galois G-covering, we have that π•(P [b]) = B(b, π(−)) ∼= ⊕x∈π−1(b)P [x] for any b ∈ B0. 
Moreover, π•(PrjB) ⊆ PrjA. Since the G-action on A is free, Remark 6.3 together with Theorem 6.2 of [2]
implies that the pull-up functor π• is fully faithful. Moreover, by [6, Proposition 6.4], there is a natural 
isomorphism

γY : π•π•(Y ) → ⊕g∈GgY,

for any Y ∈ modA.
Next, we recall the construction of adjoint isomorphisms φ and ψ of (π•, π•), where for any M ∈ ModA

and N ∈ ModB, both

φM,N :ModA(M,π•(N)) → ModB(π•(M), N) (5.3)

is an isomorphism and nature in two variables M , N . For any u : M → π•(N) and b ∈ B0, φM,N (u)(b) :=
(u(x))x∈π−1(b) : ⊕x∈π−1(b)M(x) → N(b) and φM,N (u) := (φM,N (u)(b))b∈B0 .

It is easy to check that for any morphisms u ∈ ModA(M, π•(N)) and v ∈ ModB(π•(M), N),

φM,N (u) = λN ◦ π•(u),

φ−1
M,N (v) = π•(v) ◦ μM

where λN = φπ•(N),N (idπ•(N)) : π•π
•(N) → N and μM = φ−1

M,π•(M)(idπ•(M)) : M → π•π•(M) is the counit 
and unit of (π•, π•), respectively.

Proposition 5.1 ([6, Theorem 6.5], [10]). Let A and B be two locally bounded categories with G a group 
acting freely on A and π : A → B a G-invariant Galois G-covering. Then the following statements hold.

(1) The push-down functor π• : modA → modB is a G-precovering such that for any X, Y ∈ modA,

π•X,Y : ⊕g∈GmodA(M, gN) → modB(π•(X), π•(Y )),

given by π•X,Y = φX,π•(Y ) ◦ ModA(X, γ−1
Y ) ◦ νX,Y , is an isomorphism.

(2) If A is locally support-finite and G is a torsion-free group, then π• is a Galois G-covering.

Proposition 5.2. Let A and B be two locally bounded categories with G a group acting freely on A and 
π : A → B a G-invariant Galois G-covering. Then the push-down functor π• : modA → modB induces the 
following isomorphism of subgroups

⊕g∈GprjA(X, gY ) ∼= prjB(π•(X), π•(Y )),

for any X, Y ∈ modA. In this case, prjB is a G-liftable admissible ideal on modB.

Proof. We will divide the proof into following steps.
Step 1: The natural isomorphism ν described in (5.2) induces the subgroups isomorphism

⊕g∈GprjA(X, gY ) ∼= PrjA(X,⊕g∈GgY ).

For any (ug)g∈G ∈ ⊕g∈GprjA(X, gY ) with each ug ∈ prjA(X, gY ), since the G-action on modA is locally 
bounded, there is a finite subset G0 of G such that uh = 0 for any h ∈ G\G0. For each h ∈ G0, since 
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uh ∈ prjA(X, hY ), there are two morphisms sh : X → Ph and th : Ph → hY such that uh = th ◦ sh, 
where Ph ∈ prjA. Then f ′ = (uh)h∈G0 = diag{th|h ∈ G0} ◦ (sh)h∈G0 and so νX,Y ((ug)g∈G) = ηG0 ◦ f ′ =
ηG0 ◦ diag{th|h ∈ G0} ◦ (sh)h∈G0 , where (sh)h∈G0 : X → ⊕h∈G0Ph is a column-matrix, and diag{th|h ∈
G0} : ⊕h∈G0Ph → ⊕h∈G0hY is a diagonal matrix. It implies that νX,Y ((ug)g∈G) ∈ PrjA(X, ⊕g∈GgY ). Since 
νX,Y is injective, the restriction map νX,Y | : ⊕g∈GprjA(X, gY ) → PrjA(X, ⊕g∈GgY ) is injective.

For any v ∈ PrjA(X, ⊕g∈GgY ), since ν is an isomorphism and the G-action on modA is locally bounded, 
there is a finite subset G0 of G such that for h ∈ G0, νX,Y ((v′h)h∈G0) = v, where v′h = ph ◦ v : X → hY for 
h ∈ G0.

Next, we shall prove that v′h ∈ prjA(X, hY ) for each h ∈ G0.
Since v ∈ PrjA(X, ⊕g∈GgY ), we assume that there is a projective module ⊕i∈IP [xi] such that v factors 

through ⊕i∈IP [xi]. Consider the commutative diagram

X
v

a

⊕g∈GgY

⊕i∈IP [xi]
b

For the morphism a : X → ⊕i∈IP [xi], since X is finitely generated, there is a finite subset J of I such that 
there is a commutative diagram

X
v

a

a′

⊕g∈GgY

⊕i∈JP [xi]

η
J

b◦η
J

⊕i∈IP [xi]

b

Set pk : ⊕g∈GgY → kY , for k ∈ G0. Then, there is a commutative diagram

X
v

v′
k

a′

⊕g∈GgY
pk

kY

⊕i∈JP [xi]
pk◦b◦ηJ

b◦η
J

Thus, v′k ∈ prjA(X, kY ) since ⊕i∈JP [xi] ∈ prjA for each k ∈ G0. It implies that νX,Y | is surjective and 
hence, νX,Y | is an isomorphism.

Step 2: The adjoint isomorphism φM,N described in (5.3) induces the subgroups isomorphism

PrjA(M,π•(N)) ∼= prjB(π•(M), N),

for any M , N ∈ modA.
For any f ∈ PrjA(M, π•(N)), there is a projective A-module P such that f factors through P . Since 

φM,N (f) = λN ◦ π•(f), where λN is a counit. Note that π• preserves projective objects. Thus, φM,N (f) =
λN ◦ π•(f) ∈ PrjB(π•(M), N). Similarly, since π• preserves projective objects, φ−1

M,N (g) = π•(g) ◦ μM ∈
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PrjA(M, π•(N)) for any g ∈ PrjB(π•(M), N), where μM = φ−1
M,π•(M)(idπ•(M)) is a unit. Then the restriction 

φM,N | of φM,N on PrjA(M, π•(N)) is an isomorphism.
Step 3: Then from Proposition 5.1, we obtain the commutative diagram

⊕g∈GprjA(X, gY ) ∼=

νX,Y |

π•X,Y |

PrjA(X,⊕g∈GgY )

(X,γY )∼=

prjB(π•(X), π•(Y )) ∼=

φ−1
X,π•(Y )|

prjB(X,π•π•(Y ))

Then, we have that the restriction map π•X,Y | is an isomorphism.
Finally, from Example 4.2 and Corollary 3.6, we know that prjB is a G-liftable admissible ideal on 

modB. �
Corollary 5.3. [16, Proposition 2.6]Let A and B be two locally bounded categories with G a group acting 
freely on A and π : A → B a G-invariant Galois G-covering. Then the push-down functor induces a G-
precovering π̃• : modA → modB. If A is locally support-finite and G is a torsion-free group, then π̃• is a 
Galois G-covering.

Proof. It comes from Proposition 3.7, Proposition 5.1 and Proposition 5.2, Theorem 3.9. �
Next, we consider apply our results into Gorenstein theory. First, we recall some notions.
Let U be an abelian category having enough projective objects, denoted by PrjU. A complex of projective 

P • : · · · → P i−1 → P i → P i+1 → · · · is said to be a complete projective complex provided that the 
complexes HomU(P •, PrjU) and HomU(PrjU, P •) are acyclic. An object X in A called Gorenstein projective
if X is a syzygy of a complete projective complex.

Now, we assume that A is a locally bounded k-linear category. We denote by GP(A) the full subcategory 
of ModA consisting of all Gorenstein projective objects in ModA. A finitely generated A-module X is 
called finitely generated Gorenstein projective, if X is a syzygy of a complete projective complex of finitely 
generated projective A-modules. We denote by Gp(A), the full subcategory of modA formed by all finitely 
generated Gorenstein projective A-modules. It is well-known that Gp(A) is a Frobenious category. By [1, 
Proposition 4.4], we have that GP(A) 

⋂
modA = Gp(A). If there is a G-action on A, then Gp(A) is a 

G-subcategory of modA, that is, g · Gp(A) ⊆ Gp(A) for any g ∈ G.

Corollary 5.4. Let A be a locally support-finite with G a torsion-free group acting freely on A, B be a locally 
bounded category and π : A → B a G-invariant Galois G-covering. Then the triangulated category Gp(A)
has Serre functor if and only if Gp(B) has Serre functor.

Proof. By [1, Lemma 3.7], we have that the push-down functor π• preserves complete projective complexes of 
finitely generated projective A-modules. Thus π• sends Gp(A) to Gp(B). Since Gp(A) is a full G-subcategory 
of modA and Gp(B) is a full subcategory of modB, the restriction map π•|Gp : Gp(A) → Gp(B) of π• is a 
G-precovering. Note that prj ⊆ Gp. Thus, by Proposition 5.2, prjB is a G-liftable admissible ideal on Gp(B).

Moreover, if A is locally support-finite and G is a torsion-free group, then π• is a Galois G-covering 
with an admissible G-action on modA. Let X be a finitely generated B-module in Gp(B). From [10], there 
exists a finitely generated A-module X ′ such that X ∼= π•(X ′), where X ′ is a certain direct summand of 
π•(X). By [1, Lemma 4.2], we have that the pull-up functor π• preserves complete projective complexes. 
Then π•(X) ∈ GP (A). Since GP (A) is closed under direct summands, we know that X ′ ∈ GP (A) 

⋂
modA. 

Note that GP (A) 
⋂

modA = Gp(A). Thus, we see that X ′ ∈ Gp(A). Therefore, π•|Gp is dense and so, it is 
a Galois G-covering with an admissible G-action on Gp(A).
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By Gp is Hom-finite Krull-Schmidt and Theorem 3.9, π•|Gp induces a Galois G-covering π•|Gp : Gp(A) →
Gp(B).

It is easy to see that π• is a triangle functor since Gp is a Frobenious category and π• is exact. Since Gp
is Hom-finite Krull-Schmidt, so does Gp. Then by Corollary 4.13, we have that Gp(A) has Serre functor if 
and only if Gp(B) has Serre functor. �
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