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ABSTRACT
This article studies the pricing of VIX futures and options by directly modeling the dynamics of VIX, based on realized

semivariances computed from high‐frequency data of VIX. We derive the closed‐form pricing formula for both the VIX futures

and options. The empirical results show that the new model provides superior pricing performance compared with the model

based on conventional unsigned realized variance and the classic Heston‐Nandi GARCH model, both in sample and out of

sample. Our study confirms that the decomposition of realized variance into upside and downside components helps to improve

the pricing performance for VIX futures and options.

JEL Classification: C51, C52, G12, G13

1 | Introduction

The CBOE VIX, as a measure of market implied volatility of
S&P 500 index, has been widely studied over the past two
decades. The launch of futures and options written on VIX in
2004 and 2006 enables investors to trade volatility directly and
hedge their exposure of portfolio to volatility risk. Since then,
VIX derivatives have become an important part of financial
markets, which prompt researchers to devote more attention to
study the valuation of VIX derivatives.

The literature on pricing VIX derivatives can be mainly divided
into two categories. One strand is to model the dynamics of S&P
500 index (SPX) under the physical measure and then derive the
pricing formulas for VIX and VIX derivatives after risk
neutralization. Under the continuous‐time framework, Zhang
and Zhu (2006) explored the pricing of VIX futures by utilizing the
Heston stochastic model of SPX. Sepp (2008) considered the VIX

option pricing and assumed that the variance of SPX returns is
driven by the Heston stochastic model with variance jumps. Other
studies under the continuous‐time framework include Lin (2007),
Lin and Chang (2009), Lian and Zhu (2013), and Luo, Zhang, and
Zhang (2019). Under the discrete‐time framework, Wang et al.
(2017) and Tong (2024) priced the CBOE VIX under affine and
non‐affine GARCHmodels, respectively.1 Huang, Tong, andWang
(2019) and Wang and Wang (2020) adopted the HAR‐gamma
process with flexible leverage components (LHARG) and the
GARV model with two hidden components and jump (GARV‐2C‐
J) to depict the dynamics of SPX and price VIX futures,
respectively. For VIX options, Cao et al. (2020) provided semi
closed‐form solutions under affine GARCH models, and Tong and
Huang (2021) derived analytical pricing formulas when the SPX
return follows the GARV and Realized GARCH models.

The second strand of the literature is to directly model the dynamics
of VIX under the risk‐neutral measure. For example, Grünbichler
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and Longstaff (1996) used the mean‐reverting square‐root process to
model the implied volatility index and price options, Goard and
Mazur (2013) developed analytic solutions for VIX option prices
when the VIX are modeled by the 3/2‐model, and Mencia and
Sentana (2013) compared the empirical performance of several
models on pricing VIX derivatives. Other work under the
continuous‐time framework included Park (2016) and Jing, Li,
and Ma (2020). For discrete‐time models, the literature is more
about pricing VIX futures: Yin, Bian, and Wang (2021) applied the
HAR model with asymmetric jumps to model the logarithm of VIX
and priced VIX futures. Based on a similar process, Tong, Huang,
andWang (2022) investigated the information role of VIX futures in
pricing VIX options. Wang et al. (2022) extended the model in Yin,
Bian, and Wang (2021) by incorporating dynamic volatility with
short‐ and long‐run components and dynamic jump intensity. The
above‐mentioned two studies only use daily series of VIX, not the
information contained in the high‐frequency data of VIX. Jiang
et al. (2022) applied VIX 5‐min high frequency data to identify the
interday and intraday jumps of VIX and incorporated these jumps
when modeling the logarithmic VIX to price VIX futures.

Modeling the dynamics of S&P 500 to price VIX derivatives can
provide a consistent framework for the SPX, VIX, and VIX
derivatives, but it can also induce inaccurate integration problems,
and the computation is time consuming, while directly modeling
the dynamics of VIX can overcome these problems. However, the
majority of the literature on pricing VIX derivatives belongs to the
first category, and the exploration of the second modeling method
is still at the initial stage. Therefore, this paper studies VIX option
pricing by directly modeling the dynamics of VIX.

It is well known that the realized variance computed from high‐
frequency data provides accurate measurement of latent volatility
and thus improves the volatility forecasting and derivatives pricing.
Further, Barndorff‐Nielsen, Kinnebrock, and Shephard (2010)
proposed to distinguish upside and downside components from
realized variance, which are calculated by summing up intraday
positive and negative returns, respectively. Existing studies showed
that such decomposition of realized variance of SPX returns can
improve volatility prediction (Patton and Sheppard 2015), VIX
futures pricing (Tong and Huang 2023), and stock option pricing
(Feunou and Okou 2019). However, the studies on the role of
realized semivariance of VIX in derivatives pricing remain limited.

As a volatility index, the dynamics of VIX exhibit characteristics
distinct from those of stock prices. The asymmetric leverage effect2

dictates that volatility tends to escalate more significantly during
stock price declines than it decreases during market upswings.
This asymmetry implies that the realized upside volatility of VIX
may manifest more pronounced peaks than its downside volatility.
It also reveals the importance of separately modeling the upside
and downside components. These insights, supported by the
summary statistics presented in Table 1, underscore the potential
impact of these unique characteristics on VIX options pricing.
Therefore, this paper constructs the realized semivariance of VIX
based on high‐frequency VIX data and check if the distinction
between realized upside and downside variances can improve the
pricing performance for VIX futures and option. Considering the
long‐memory feature of volatility process, we take the heteroge-
neous autoregressive (HAR) framework and combine it with a
realized semivariance‐based model.

Our contributions are threefold. First, we contribute to the
literature on pricing VIX futures and options by directly
modeling VIX with realized semivariances. Our paper is closely
related to Jiang et al. (2022) and Qiao and Jiang (2023), who
priced VIX derivatives using high‐frequency data of VIX.
However, both of these two studies only focused on the pricing
of VIX futures. The former investigated the impact of jumps on
futures prices, and the latter combined realized the
semivariance‐based model with support vector regression
(SVR) to price VIX futures. Our work is different from theirs
since we provide a unified framework to jointly price VIX
futures and options. And to the best of our knowledge (if any),
this paper is the first to investigate the role of realized
semivariance of VIX in pricing VIX options. Second, we drive
the closed‐form expressions of VIX futures price and option
price under the proposed model, in which the moment
generating function is expressed as a exponential linear
function of contemporaneous and lagged logarithm VIX, as
well as the conditional upside and downside variances. This
makes the computation of futures and option prices much
easier and time saving. Third, we conduct an extensive
empirical analysis to investigate the pricing performance of
the proposed realized semivariance‐based model. We compare
its in‐ and out‐of‐sample performance with the model based on
conventional unsigned realized variance and the classic Heston‐
Nandi GARCH model. The empirical results show that the
realized semivariance‐based model performs best both in and
out of sample, indicating that separating upside and downside
realized variances of VIX is helpful to obtain more accurate
prices of VIX futures and options.

The remainder of the paper is organized as follows: Section 2
introduces the realized semivariance‐based model, HAR‐RSV.
Section 3 derives the pricing formulas of VIX futures and
options under the HAR‐RSV model. In Section 4, we introduce
two competing models and derive their pricing formulas.
Section 5 presents empirical analysis, where we describe the
data, estimate the parameters, and investigate the pricing
performance of the models, both in and out of sample. Finally,
Section 6 concludes the paper.

2 | The Realized Semivariance‐Based Model
(HAR‐RSV)

According to Barndorff‐Nielsen, Kinnebrock, and Shephard
(2010), for a given day t , the upside realized semivariance RVt

u

and the downside realized semivariance RVt
d for the logarithm

of the VIXt, denoted as y = logVIXt t , are defined as
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where r y y= −t j t j t j, , , −1 is the jth intraday return during day
t M, t is the number of returns on that day, and ⋅{ } is the
indicator function. By construction, the total realized variance,
RVt , is given by RV RV RV= +t t

u
t
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In this paper, we build a model to pricing VIX futures and
options by incorporating the realized upside and downside
variances of VIX into the conditional variance updating
equations. Due to the long‐memory feature of VIX, we consider
an HAR structure for the dynamics of logarithm VIX. Under the
risk‐neutral measure, the dynamics of yt are assumed to follow
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The conditional variance of yt+1 is ht , which is the sum of
conditional upside variance hu t, and downside variance hd t, ,
where hu t, and hd t, correspond to the expected realized
semivariances. The innovations consist of two independent
Gaussian shocks Nϵ ~ (0, 1)i t, +1

(1) for i u d= , . The terms
λ h( − )u u t

1

2 , and λ h( − )d d t
1

2 , can be interpreted as compensa-

tions for upside and downside volatility risk of VIX.

We assume that the information about realized upside and
downside variances at day t is used to update the conditional
semivariances of yt+1:

h w b h a RV= + + ,u t u u u t u t
u

, , −1 (3)

h w b h a RV= + + ,d t d d d t d t
d

, , −1 (4)

where w b> 0, > 0i i and a > 0i , for i u d= , . By introducing
measurement errors Nϵ ~ (0, 1)i t,

(2) for i u d= , , the measure-
ment equations are specified as follows:
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where ϵi t,
(2) has correlation ρi with ϵi t,

(1). This setting is
consistent with the measurement equation in the GARV
model proposed by Christoffersen et al. (2014). The above
equations can result in E RV h E RV h[ ] = , [ ] =t t

u
u t t t

d
d t+1 , +1 , ,

thus E RV h[ ] =t t t+1 . To make the variance processes station-
ary, the parameters further satisfy the constraint conditions
b a+ < 1i i . We call the model described in this subsection as
the HAR‐RSV model.

3 | The Pricing Formulas of VIX Futures and
Options

We first derive the pricing formulas of VIX futures and options
under the HAR‐RSV model. Let f ϕ( )t T, be the conditional
moment generating function (MGF) of yT , that is,

f ϕ E ϕy( ) = [exp( )].t T t T, (7)

And an analytical form of f ϕ( )t T, is crucial for deriving closed‐
from pricing formula for VIX futures and options. The form of
f ϕ( )t T, is given by the following Proposition 1.

Proposition 1. Suppose that y = logVIXt t follows the HAR‐
RSV process, then the conditional moment generating function of
yT takes the following log‐linear form:
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The terminal conditions are B ϕ ϕ B ϕ(0, ) = , (0, ) = 0i1

for ≥i A ϕ C ϕ D ϕ2, (0, ) = (0, ) = (0, ) = 0.

Proof. See Appendix A. □

Since we directly model the dynamics of VIX under the risk‐
neutral measure, the price of VIX futures at time t with a
maturity date T is given by the expectation

F E E y= [VIX ] = [exp( )],t T t
Q

T t T, (9)

which is the value of the conditional moment generating
function f ϕ( )t T, at ϕ = 1.

As for the VIX call option price, it can be written as follows:
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where ⋅p ( ) is the conditional probability density function of yT .
By using a same mathematical technique in Heston and Nandi
(2000), Ct can be further expressed in the following proposi-
tion 2, which can be evaluated by using the analytical
expression of f ϕ( )t T, provided in Proposition 1.

Proposition 2. If the conditional characteristic function of
y = logVIXT T is f iϕ( )t T, , then the price of a European VIX call
option at time t with strike price K and maturity date T is
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where i = −1 and xRe[ ] takes the real part of x .

4 | Competing Models

We consider two competing models and compare their
pricing performances with our proposed HAR‐RSV model.
The first competing model incorporates realized variance but
does not distinguish the upside and downside realized
semivariance; we call it the HAR‐RV model. The second
competing model uses the Heston‐Nandi GARCH model for
the conditional variance equation, and we call it the HAR‐
Heston‐Nandi GARCH model (abbreviated as HAR‐HNG
hereafter).

4.1 | HAR‐RV Model

The dynamics of logarithm VIX, yt, are given by
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where y y,t
d

t
w( ) ( ), and yt

m( ) are given by Equation (2). Here the
innovation only consists of one single Gaussian shock

Nϵ ~ (0, 1)t+1
(1) . The conditional variance ht+1 is updated
according to the realized variance,

h w bh aRV= + + .t h t t−1 (11)

The realized variance RVt+1 is linked with its expectation ht
according to the following measurement equation:
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(1). The above
equation implies E RV h[ ] =t t t+1 . Under the HAR‐RV model, the
moment generating function of yT is given by
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The terminal condition is B ϕ ϕ B ϕ(0, ) = , (0, ) = 0i1 for
≥i A ϕ C ϕ2, (0, ) = (0, ) = 0. Proof is given in Appendix B. After

getting the moment generating function f ϕ( )t T, under HAR‐RV
model, the futures price is the value of f ϕ( )t T, at ϕ = 1, and option
price can be obtained by using the formula given in Proposition 2.

4.2 | HAR‐HNG Model

Under the HAR‐HNGmodel, the dynamics of logarithm VIX, yt,
are described by
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The conditional variance updating equation is given as follows:

h w bh a γ h= + + (ϵ − ) .t h t t t+1 +1
2 (17)

This model does not incorporate any realized measures in the
variance updating equation, and only daily series of VIX are
needed. Under the HAR‐HNG model, the moment generating
function of yT is given by
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where B m ϕ( , )i can be obtained in a similar way of HAR‐RV;
see Appendix C for more details. After getting the moment
generating function f ϕ( )t T, under the HAR‐HNG model, the
prices of VIX futures and options can be obtained.

5 | Empirical Analysis

5.1 | Data

To construct the realized upside and downside variances of VIX, we
collect the intraday high‐frequency VIX data from TickData.com.
The realized semivariances are computed using the 5‐min VIX log‐
returns to avoid the microstructure problem. Figure 1 plots the time
series of the daily VIX and logarithmic VIX, along with the realized
volatility and its upside component (square root of realized variance
and upside realized variance), and the difference between upside
and downside realized volatilities.

The highest level of volatility occurred on August 24, 2015,
marking the beginning of a stock market crash. On that day, the
VIX level rose to 50.78 from 28.03, then dropped to 40.62 at
closing. The realized volatility on August 24, 2015 was 0.6340,
with the upside component at 0.5964, accounting for 94.07% of
the total realized volatility. This corresponds to the highest
point of the bottom right subfigure of Figure 1. For the second
highest realized volatility, the downside component has more
weight, although the difference between the upside and
downside components is not so big. Overall, when the realized
volatility of VIX is extremely high, the upside component tends
to account for a more substantial portion.

Table 1 further presents the summary statistics of annualized
realized volatility, upside and downside volatility, and VIX
itself. We can see that RVu and RVd have similar magnitudes, as
their means and medians are very close. This is because the
difference between upside and downside realized volatilities is
overall symmetric, as shown in the bottom right subfigure of
Figure 1. While there are outliers with exceptionally high values
in the realized upside volatilities, their influence on the overall
mean and median is constrained when analyzing a substantial
number of observations. However, RVu exhibits a larger
standard deviation, skewness, and kurtosis3, particularly in
terms of kurtosis, which is more than two times higher than
that of RVd.

To evaluate the empirical performance of the proposed HAR‐
RSV model on pricing VIX futures and options, we collect a
panel of VIX futures prices and option prices from CBOE's
website. The full sample of futures contracts spans a 17‐year
period from March 31, 2004 to October 27, 2020, while the full
sample of VIX option contracts spans a 15‐year period from
March 1, 2006 to October 15, 2020. Tables 2 and 3 present the
summary statistics of the VIX futures and options contracts in
our sample, respectively. Note that as VIX calls have much
higher trading volumes than the puts, we consider only VIX call
options following Song and Xiu (2016), Tong and Huang (2021),
and Luo, Zhang, and Zhang (2019).

Table 2 shows that our sample consists of 29,807 futures
contracts, with an average VIX futures value of 20.85. We
further categorize the contracts based on the VIX level and days
to maturity. The majority of futures contracts are associated with
a VIX level smaller than 20, in which VIX futures with VIX level
below 15 account for 42.3% of the total contracts, while those
with a VIX level between 15 and 20 account for 28.15%. The
average futures prices increase with the VIX level, confirming a
close relationship between VIX futures prices and the spot VIX
level. The standard deviation generally increases as the VIX level
increases and as the days to maturity decrease.

To assess the performance of option pricing, we conduct in‐
sample analysis using Wednesday contracts and out‐of‐sample
analysis using Thursday contracts. Table 3 presents the
summary statistics of the VIX call option contracts for both
on Wednesday and Thursday.

Table 3 shows there are 45,945 Wednesday call option contracts
and 45,446 Thursday contracts in our sample, with average VIX
option prices of 1.653 and 1.639, respectively. We further divide
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FIGURE 1 | Daily time series of CBOE VIX and its realized volatilities.

TABLE 1 | Summary statistics of historical series.

Mean Median Std. dev. Skewness Kurtosis Max Min

Realized volatility 75.92 65.99 43.71 5.32 77.00 1006.43 15.61

Upside volatility 52.97 45.33 34.61 6.54 121.51 946.75 5.99

Downside volatility 53.10 46.49 29.18 4.11 52.61 657.27 7.31

VIX 18.94 16.40 8.88 2.65 12.83 83.05 9.03

Note: Summary statistics for the realized volatility of VIX, upside and downside volatility of VIX, and VIX level, where realized volatility and upside and downside
volatility are annualized by the transformation RV100 252 × , etc.

the contracts according to the moneyness and days to maturity.
The majority of option contracts are out of the money (m < 0),
accounting for approximately 76% of total contracts. The
distribution of contracts across different days to maturity is
relatively uniform. Additionally, the average option prices
increase with the moneyness and maturity, and the average
implied volatilities decrease with the moneyness and maturity.

5.2 | Parameter Estimation

5.2.1 | Parameter Estimation Using Futures Contracts

In the analysis of futures pricing, we estimate the parameters of
the proposed HAR‐RSV model and the two competing models
by maximizing the likelihood of pricing errors. Given a set of
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parameters, the pricing error of each futures contract j is
computed as follows:

e F F= − ,j j
Mkt

j
Mod (19)

where Fj
Mkt represents the market futures price, and Fj

Mod

represents the model‐based futures price. We assume that
the pricing errors follow a normal distribution with a zero

mean and a variance s2 with the following log‐likelihood
function

 
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where N is the number of futures contracts in the sample.
We can get the parameter estimations by maximizing

TABLE 2 | Summary statistics of VIX futures contracts.

Obs. Mean STD Skew Kurt Min Max

All 29,807 20.85 6.54 1.66 7.05 9.91 71.15

Partitioned by VIX level

VIX < 15 12,607 16.29 2.23 0.49 4.63 9.91 27.60

15≤VIX < 20 8391 20.12 3.11 0.74 3.03 13.50 31.00

20≤VIX < 25 4120 24.21 3.53 0.31 2.26 16.70 33.30

25≤VIX < 30 2079 27.22 3.70 −0.42 2.41 17.69 35.39

30≤VIX < 35 958 30.41 3.59 −1.26 4.19 17.65 38.40

35≤VIX 1652 37.41 7.82 0.47 3.85 18.73 71.15

Partitioned by days to maturity

DTM< 30 3738 19.51 8.42 2.23 9.26 9.91 71.15

30≤DTM< 90 7495 20.65 7.32 1.67 6.38 11.45 60.10

90≤DTM< 150 7243 21.42 6.42 1.31 4.63 12.54 52.38

150≤DTM< 210 6726 21.64 5.69 1.16 3.91 13.53 45.99

210≤DTM 4605 20.21 4.08 1.36 4.58 14.30 37.35

Note: This table presents the summary statistics of VIX futures contracts from March 31, 2004 to October 27, 2020. DTM denotes the days to maturity.

TABLE 3 | Summary statistics of VIX option contracts.

Wednesday Thursday

Obs. Avg. price Avg. impv Obs. Avg. price Avg. impv

All 45,945 1.653 0.996 45,446 1.639 1.004

Partitioned by moneyness, ∕m F K= log( )

m<− 0.4 16,777 0.470 1.207 16,579 0.484 1.221

− 0.4≤m<− 0.2 9597 1.062 1.015 9645 1.063 1.027

− 0.2≤m<− 0.1 4499 1.591 0.920 4403 1.601 0.924

− 0.1≤m< 0 4085 2.085 0.849 4131 2.113 0.857

0≤m< 0.1 3811 2.754 0.793 3698 2.742 0.794

0.1≤m 7176 4.416 0.713 6990 4.335 0.708

Partitioned by days to maturity

DTM< 20 7179 1.030 1.296 6843 1.028 1.328

20≤DTM< 40 7009 1.320 1.143 10,215 1.356 1.120

40≤DTM< 60 8630 1.655 1.002 5688 1.715 0.988

60≤DTM< 80 7876 1.796 0.923 7875 1.793 0.925

80≤DTM< 100 7181 1.964 0.855 6950 1.939 0.858

100≤DTM 8070 2.078 0.791 7875 2.066 0.793

Note: This table presents the characteristics of VIX call option data by moneyness and maturity. The sample period starts on March 1, 2006, and ends on October 15, 2020.
The moneyness is measured by ∕m F K= log( ), where F is the futures price of VIX and K is the strike price. DTM denotes days to maturity.
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the above pricing error likelihood. This estimation method
is equivalent to minimizing the sum of squared errors  ej

N
j=1
2.

Table 4 reports the estimation results for the three models
considered. From Table 4, we can see that for all models, the
estimates of βd and βm significantly differ from zero, while the
magnitudes of estimates of βw are relatively smaller.4 This suggests
that the daily lag has the most substantial impact on explaining
the current VIX level, followed by the monthly component, with
the weekly component having the least influence. The sum of
β β,d w, and βm is very close to one, indicating a high level of
persistence in the log VIX series. In the HAR‐RSV model, both the
estimates of λu and λd are negative, but the values are significantly
different, signifying distinct impacts of upside and downside
variances on log VIX. The leverage effect related parameters, γu
and γd, also differ significantly, with the absolute value of γu being
much larger than that of γd, indicating a more pronounced
leverage effect for upside variance.

5.2.2 | Parameter Estimation Using Option Contracts

For option pricing analysis, we estimate the parameters of the
HAR‐RSV, HAR‐RV, and HAR‐HNG models by matching the
model‐implied VIX option prices with the option prices from
the market that minimizes the root of mean squared pricing
errors (RMSE).

TABLE 4 | Parameter estimation using VIX futures contracts.

HAR‐RSV HAR‐RV HAR‐HNG

w 0.0297 0.0216 0.0229

βd 0.8651 0.8947 0.9081

βw 0.0498 9.09E−06 2.94E−09

βm 0.0794 0.0971 0.0857

λ λ( )u −0.6720 0.3118 −1.5622

λd −3.1683

w w( )u h 7.62E−07 6.29E−04 5.18E−05

wd 2.98E−05

b b( )u 0.9989 0.9862 0.9524

bd 0.9514

a a( )u 9.57E−04 1.39E−04 3.18E−08

ad 0.0378

σ σ( )u 0.0027 1.7518

σd 3.57E−04

γ γ( )u −222.2185 115.1940 413.8801

γd −40.8975

ρ ρ( )u −0.9572 −0.9997

ρd −0.9998

Note: This table reports the estimation results for the three models using futures
contracts for the period starting on March 31, 2004, and ending on October 27,
2020. The parameter notation in the bracket is for the HAR‐RV and HAR‐HNG
models.
Abbreviations: HAR, heterogeneous autoregressive; HNG, Heston‐Nandi GARCH;
RSV, realized semivariance; RV, realized variance.

TABLE 5 | Parameter estimation using VIX option contracts.

HAR‐RSV HAR‐RV HAR‐HNG

w 0.0369 0.0256 0.0185

βd 0.8679 0.9301 0.9133

βw 0.0591 0.0117 0.0169

βm 0.0687 0.0518 0.0638

λ λ( )u −1.1301 −0.2195 0.0812

λd −3.2827

w w( )u h 1.07E−05 9.79E−04 8.33E−04

wd 1.06E−05

b b( )u 0.9990 0.9118 0.7733

bd 0.9443

a a( )u 5.66E−04 2.50E−03 2.93E−06

ad 0.0511

σ σ( )u 2.13E−03 0.0505

σd 5.70E−04

γ γ( )u 980.4967 123.3745 −266.0089

γd 128.9998

ρ ρ( )u −0.9378 −0.9851

ρd −0.9994

Note: This table reports the estimation results for the three models using
Wednesday call contracts for the period starting on March 1, 2006, and ending on
October 15, 2020. The parameter notation in the bracket is for the HAR‐RV and
HAR‐HNG models.
Abbreviations: HAR, heterogeneous autoregressive; HNG, Heston‐Nandi GARCH;
RSV, realized semivariance; RV, realized variance.

Table 5 reports the parameter estimation results of the three
models we consider based on Wednesday option contracts.
These estimates show similar patterns to the results estimated
using futures contracts, which confirms the different impact of
upside and downside variances on log VIX.

5.3 | VIX Futures and Options Pricing
Performance

We employ three error measures to evaluate the pricing
performance of the three models, the root mean square error,
mean absolute error, and mean absolute percentage error,
which are defined as the following three equations,

 ( )
N

c cRMSE =
1

− ,
j

N

j
Mkt

j
Mod

=1

2
(21)


N
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1

− ,
j

N

j
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j
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=1
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
N

c cMAPE =
1

1 − ,
j

N

j
Mod

j
Mkt

=1

(23)

where cj
Mkt is the market option or futures price, cj

Mod is the
model‐implied option or futures price, and N is the total
number of available derivatives prices.
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5.3.1 | VIX Futures Pricing Performance

Table 6 shows the in‐sample pricing performances of the three
models. We report the values of RMSE, MAE, and MAPE for
the HAR‐HNG model. For the HAR‐RSV and HAR‐RV models,
we report the ratios of their RMSEs, MAEs, and MAPEs to the
HNG model. Therefore, a ratio smaller than 1 indicates a better
performance than HAR‐HNG model and vice versa. We report
the full‐sample errors in the first row, and the pricing errors for
contracts sorted by VIX level and days to maturity below.

Table 6 shows that the HAR‐RSV model consistently outperforms
the other models in all subgroups. When examining the six
subgroups categorized by the VIX level, the outperformance of the
HAR‐RSV model is most evident when the VIX level ranges
between 20 and 25, while its advantage is least pronounced for VIX
levels between 30 and 35. Interestingly, when the VIX level exceeds
35, the HAR‐HNGmodel performs better than the HAR‐RV model.
Across the five subgroups categorized by days to maturity, the
outperformance of the HAR‐RSV model becomes more noticeable
as the days to maturity increases.

To check if there exists in‐sample overfitting, we further
conduct an out‐of‐sample analysis to evaluate the VIX futures
pricing performance of the HAR‐RSV model. We use the prices
of VIX futures contracts from March 31, 2004 to December 31,
2019 to estimate the parameters and then use VIX futures
contracts in 2020 to calculate the pricing errors. Such out‐of‐
sample evaluation method is widely used in studies on
derivatives pricing, see for example, Christoffersen and Jacobs
(2004), and Tong, Hansen, and Huang (2022).

Table 7 presents the out‐of‐sample results, and it shows that
the HAR‐RSV model continues to outperform the competing

models overall, with its superiority being even more evident
in the out‐of‐sample case. However, it is worth noting that
in certain subsamples, the HAR‐RSV model may underper-
form the other models. Specifically, when the VIX level is
below 20, the HAR‐RSV model performs worse than the
HAR‐HNG model but better than the HAR‐RV model. In the
VIX range of 20–25, the HAR‐RV model is the top
performer, followed by the HAR‐HNG model, and then the
HAR‐RSV model. However, when the VIX level exceeds 25,
the HAR‐RSV model outperforms the HAR‐HNG model
significantly, with pricing errors approximately half those of
the HAR‐HNG model. Overall, the HAR‐RSV model
performs better when the VIX level is high. When
partitioning the samples by days to maturity, the HAR‐
RSV model consistently performs best, and the HAR‐HNG
model consistently exhibits the largest pricing errors.

5.3.2 | VIX Option Pricing Performance

Table 8 reports the in‐sample pricing performance of the three
aforementioned models for VIX options. Similarly, we report
the values of RMSE, MAE, and MAPE for the HAR‐HNG model
and the ratios to the HNG model for the HAR‐RSV and HAR‐
RV models. We report the full‐sample errors in the first row and
the pricing errors for contracts sorted by moneyness and days to
maturity below.

Table 8 shows that the HAR‐RSV model generally performs
best in terms of RMSE, MAE and MAPE. Compared to the
HAR‐HNG model, the HAR‐RSV and HAR‐RV models show
potential for up to a 30% reduction in pricing errors,
highlighting the value of incorporating realized volatility of
VIX in improving VIX option pricing accuracy.

TABLE 6 | In‐sample VIX futures pricing performance.

RMSE Ratio to HNG MAE Ratio to HNG MAPE Ratio to HNG

HNG RSV RV HNG RSV RV HNG RSV RV

Full sample 2.396 0.780 0.996 1.745 0.755 0.981 0.080 0.768 0.980

Partitioned by VIX level

VIX < 15 1.417 0.829 0.939 1.025 0.872 0.957 0.062 0.866 0.966

15≤VIX < 20 2.500 0.764 0.982 1.946 0.744 0.979 0.093 0.755 0.983

20≤VIX < 25 3.025 0.666 0.982 2.465 0.616 0.966 0.099 0.610 0.966

25≤VIX < 30 2.968 0.791 0.954 2.436 0.724 0.933 0.090 0.727 0.935

30≤VIX < 35 2.609 0.954 1.002 2.094 0.907 1.022 0.071 0.916 1.022

35≤VIX 4.321 0.847 1.101 3.359 0.742 1.100 0.096 0.739 1.101

Partitioned by days to maturity

DTM< 30 1.535 0.890 0.996 0.941 0.860 1.012 0.045 0.867 1.020

30≤DTM< 90 2.143 0.838 0.990 1.525 0.781 0.940 0.068 0.806 0.943

90≤DTM< 150 2.449 0.784 1.025 1.817 0.776 1.034 0.080 0.813 1.064

150≤DTM< 210 2.623 0.773 1.048 1.984 0.760 1.075 0.089 0.777 1.088

210≤DTM 2.881 0.700 0.900 2.296 0.659 0.831 0.115 0.641 0.788

Note: This table reports the in‐sample VIX futures pricing performance of the three models described in Section 2. We suppress the notations “HAR” for convenience. We use
contracts for the period starting on March 31, 2004, and ending on October 27, 2020. The pricing performance is evaluated through the root‐mean squared error (RMSE), the
mean absolute error (MAE), and the mean absolute percentage error (MAPE). The RMSEs, MAEs, and MAPEs of the benchmark HNG model are in bold font. For the RSV and
RV models, we report the ratios of their RMSEs, MAEs, and MAPEs to the HNG model. We report the pricing errors for contracts sorted by VIX level and days to maturity.
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TABLE 8 | In‐sample VIX option pricing performance (Wednesday, 2006–2020).

RMSE Ratio to HNG MAE Ratio to HNG MAPE Ratio to HNG

HNG RSV RV HNG RSV RV HNG RSV RV

Full sample 0.816 0.821 0.913 0.551 0.782 0.848 0.554 0.688 0.719

Partitioned by moneyness, ∕m F K= log( )

m<− 0.4 0.494 0.629 0.639 0.337 0.623 0.618 0.874 0.601 0.630

− 0.4≤m<− 0.2 0.713 0.730 0.755 0.517 0.697 0.724 0.556 0.695 0.724

− 0.2≤m<− 0.1 0.795 0.850 0.874 0.587 0.831 0.855 0.396 0.862 0.842

− 0.1≤m< 0 0.830 0.918 0.981 0.629 0.909 0.967 0.316 0.954 0.947

0≤m< 0.1 0.874 0.974 1.106 0.666 0.969 1.093 0.244 1.006 1.067

0.1≤m 1.348 0.839 0.984 0.971 0.839 0.988 0.200 0.884 1.017

Partitioned by days to maturity

DTM< 20 0.531 0.869 0.826 0.365 0.799 0.770 0.587 0.785 0.701

20≤DTM< 40 0.611 0.938 0.957 0.380 0.958 0.936 0.432 1.000 0.889

40≤DTM< 60 0.781 0.889 0.976 0.479 0.885 0.963 0.419 0.889 0.958

60≤DTM< 80 0.888 0.807 0.924 0.612 0.759 0.863 0.575 0.634 0.735

80≤DTM< 100 0.957 0.780 0.898 0.703 0.708 0.803 0.640 0.518 0.606

100≤DTM 0.989 0.760 0.881 0.750 0.708 0.791 0.676 0.493 0.560

Note: This table reports the in‐sample VIX option pricing performance of the three models described in Section 2. We suppress the notations “HAR” for convenience. We
use Wednesday call contracts for the period starting on March 1, 2006, and ending on October 15, 2020. The pricing performance is evaluated through the root‐mean
squared error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE). The RMSEs, MAEs, and MAPEs of the benchmark HNG model
are in bold font. For the RSV and RV models, we report the ratios of their RMSEs, MAEs, and MAPEs to the HNG model. We report the pricing errors for contracts sorted
by moneyness and days to maturity.
Abbreviations: DTM, days to maturity; RSV, realized semivariance; RV, realized variance.

TABLE 7 | Out‐of‐sample VIX futures pricing performance.

RMSE Ratio to HNG MAE Ratio to HNG MAPE Ratio to HNG

HNG RSV RV HNG RSV RV HNG RSV RV

Full sample 6.232 0.537 0.759 4.675 0.499 0.674 0.154 0.513 0.692

Partitioned by VIX level

VIX < 15 0.900 1.178 1.311 0.775 1.151 1.241 0.046 1.136 1.241

15≤VIX < 20 1.077 1.183 1.486 0.898 1.205 1.531 0.051 1.209 1.544

20≤VIX < 25 3.730 1.017 0.959 3.064 1.084 1.000 0.111 1.049 0.970

25≤VIX < 30 5.778 0.549 0.465 4.877 0.532 0.431 0.165 0.521 0.424

30≤VIX < 35 7.220 0.422 0.489 6.481 0.365 0.401 0.209 0.357 0.404

35≤VIX 9.242 0.512 0.890 8.061 0.384 0.822 0.239 0.354 0.826

Partitioned by days to maturity

DTM< 30 6.486 0.665 0.933 4.554 0.537 0.727 0.135 0.506 0.691

30≤DTM< 90 5.690 0.734 0.883 4.102 0.746 0.852 0.127 0.757 0.853

90≤DTM< 150 6.756 0.467 0.690 5.390 0.461 0.631 0.177 0.480 0.660

150≤DTM< 210 7.095 0.291 0.579 5.883 0.296 0.489 0.205 0.343 0.536

210≤DTM 4.678 0.336 0.698 3.132 0.398 0.711 0.124 0.458 0.769

Note: This table reports the out‐of‐sample VIX futures pricing performance of the three models described in Section 2. We suppress the notations “HAR” for convenience.
We use futures contracts for the period starting March 31, 2004 to December 31, 2019 to estimate the parameters and then use VIX futures contracts in 2020 to calculate
the pricing errors. The pricing performance is evaluated through the root‐mean squared error (RMSE), the mean absolute error (MAE), and the mean absolute percentage
error (MAPE). The RMSEs, MAEs, and MAPEs of the benchmark HNG model are in bold font. For the RSV and RV models, we report the ratios of their RMSEs, MAEs,
and MAPEs to those of the HNG model. We report the pricing errors for contracts sorted by VIX level and days to maturity.
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When examining subgroups categorized by moneyness and
days to maturity, the HAR‐RSV model's superiority over the
HAR‐HNG model is particularly evident for deep out‐of‐the‐
money and long‐term options. In contrast, the HAR‐RV model
excels in pricing very short‐term options.

We further conduct an out‐of‐sample analysis to evaluate the
pricing performance of the HAR‐RSV model. We use the
parameters estimated using Wednesday VIX option contracts
from March 1, 2006 to October 15, 2020 to calculate the errors
in pricing Thursday option contracts over the same period. A
similar method was also adopted Christoffersen, Jacobs, and
Mimouni (2010) and Tong and Huang (2021). Table 9 presents
the values of out‐of‐sample RMSEs, MAEs, and MAPEs of the
benchmark HAR‐HNG model, as well as the ratios of HAR‐
RSV's and HAR‐RV's pricing errors to the benchmark.

The results shown in Table 9 are very similar to the ones reported
in Table 8. The proposed HAR‐RSV model still performs best in
terms of RMSE, MAE and MAPE, although their outperformance
is slightly less pronounced compared with the in‐sample case. In
the subgroups, the superior pricing performance of the HAR‐RSV
and HAR‐RV models is also similar to that of the in‐sample case.

6 | Conclusion

This article employs a realized semivariance‐based model to
directly depict the dynamics of VIX and studies VIX futures
and option pricing under the proposed model. We construct

the upside and downside realized semivariance using 5‐min
VIX data and derive closed‐form solutions of VIX futures and
option price. The empirical results show that the realized
semivariance‐based HAR‐RSV model generally has the best
in‐ and out‐of‐sample pricing performance compared with
the two competing models, the conventional unsigned
realized variance‐based HAR‐RV model, and the classic
HAR‐Heston‐Nandi GARCH model. The outperformance of
the HAR‐RSV model is more pronounced for deep out‐of‐
money and longer‐term options. The results indicate that the
decomposition of realized variance into upside and downside
components helps to improve the performance on pricing
VIX futures and options.
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TABLE 9 | Out‐of‐sample VIX option pricing performance (Thursday, 2006–2020).

RMSE Ratio to HNG MAE Ratio to HNG MAPE Ratio to HNG

HNG RSV RV HNG RSV RV HNG RSV RV

Full sample 0.807 0.831 0.917 0.547 0.786 0.852 0.550 0.690 0.724

Partitioned by moneyness, ∕m F K= log( )

m<− 0.4 0.490 0.668 0.669 0.339 0.644 0.640 0.860 0.605 0.638

− 0.4≤m<− 0.2 0.706 0.739 0.774 0.513 0.697 0.731 0.553 0.688 0.725

− 0.2≤m<− 0.1 0.806 0.863 0.891 0.597 0.826 0.855 0.402 0.857 0.838

− 0.1≤m< 0 0.865 0.919 0.995 0.650 0.910 0.971 0.322 0.955 0.943

0≤m< 0.1 0.923 0.964 1.087 0.688 0.961 1.080 0.252 1.004 1.060

0.1≤m 1.293 0.845 0.977 0.924 0.841 0.988 0.195 0.887 1.020

Partitioned by days to maturity

DTM< 20 0.562 0.876 0.839 0.375 0.790 0.772 0.607 0.763 0.709

20≤DTM< 40 0.598 0.919 0.958 0.382 0.932 0.940 0.418 0.989 0.906

40≤DTM< 60 0.836 0.902 0.977 0.513 0.886 0.962 0.434 0.852 0.943

60≤DTM< 80 0.851 0.820 0.927 0.596 0.765 0.866 0.545 0.641 0.742

80≤DTM< 100 0.955 0.794 0.909 0.700 0.717 0.813 0.635 0.529 0.615

100≤DTM 0.992 0.772 0.886 0.753 0.713 0.795 0.686 0.493 0.566

Note: This table reports the out‐of‐sample VIX option pricing performance of the three models described in Section 2. We suppress the notations “HAR” for convenience.
We use Thursday call contracts for the period starting on March 1, 2006, and ending on October 15, 2020. The pricing performance is evaluated through the root‐mean
squared error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE). The RMSEs, MAEs, and MAPEs of the benchmark HNG model
are in bold font. For the RSV and RV models, we report the ratios of their RMSEs, MAEs, and MAPEs to the HNG model. We report the pricing errors for contracts sorted
by moneyness and days to maturity.
Abbreviations: DTM, days to maturity; HNG, Heston‐Nandi GARCH; RSV, realized semivariance; RV, realized variance.
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Data Availability Statement

The high‐frequency VIX data can be downloaded from TickData.com,
while VIX and VIX futures prices are sourced from the official websites
of CBOE (https://www.cboe.com). Additionally, VIX options data
are retrieved from OptionMetrics of WRDS. Any other data supporting
the findings of this study are available from the corresponding author
upon reasonable request.

Endnotes
1Other studies on pricing CBOE VIX with discrete‐time GARCH models
include Hao and Zhang (2013) and Hansen et al. (2024).

2The leverage effect refers to the generally negative correlation between an
asset return and its changes of volatility (Ait‐Sahalia, Fan, and Li 2013).

3We test the significance of differences in standard deviations,
skewness, and kurtosis using bootstrap method, all three tests reject
the null hypothesis of equality, yielding t‐statistics of 174.4528
(p < 0.01), 146.1762 (p < 0.01), and 156.0280 (p < 0.01), respectively.

4For the HAR‐RSV model, the significance tests for β β,d w, and βm
resulted in t‐statistics of 237.8178, 11.9952, and 100.5920, respectively,
all with p‐values <0.01. This indicates that the estimates of β β,d w,
and βm are all significantly different from zero, even though the value
of βw is close to zero. Similarly, in the other two models, these three
parameters are also significantly different from zero.
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Appendix A

Moment Generating Function Under the HAR‐RSV Model

Let f ϕ( )t T, be the conditional moment generating function (MGF) of yT ,
i.e.,

f ϕ E ϕy( ) = [exp( )].t T t T,

Assume that f ϕ( )t T, takes the following log‐linear form:
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where m T t= − . Applying the law of iterated expectations to
f ϕ( )t T, , we get
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Substituting the dynamics of y h,t u t+1 , +1 and hd t, +1 shows

Rearranging the terms

A useful result is that for a standard normal random variable ϵ,
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Substituting this result in Equation (A2) and matching the terms on the
right‐hand side of Equations (A1) and (A2), we can get the following
recursive formulae,
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The terminal condition is B ϕ ϕ B ϕ(0, ) = , (0, ) = 0i1 for ≥i A ϕ2, (0, ) =
C ϕ D ϕ(0, ) = (0, ) = 0.

Appendix B

Moment Generating Function Under the HAR‐RV Model

Let f ϕ( )t T, be the conditional moment generating function (MGF) of yT ,
that is,

f ϕ E ϕy( ) = [exp( )].t T t T,

Assume the MGF takes the following log‐linear form:
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where m T t= − . Applying the law of iterated expectations to
f ϕ( )t T, , we get
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Substituting the dynamics of yt+1 and ht+1 shows
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Rearranging the terms



 






 




( )

( )

( )

( )

A m ϕ A m ϕ B m ϕ w C m ϕ w C m ϕ a σ D m ϕ w

D m ϕ a σ C m ϕ a σ D m ϕ a σ

C m ϕ B m ϕ λ C m ϕ b C m ϕ a
B m ϕ

C m ϕ a σ

C m ϕ a σ γ C m ϕ a σ γ B m ϕ ρ B m ϕ ρ

C m ϕ a σ

D m ϕ B m ϕ λ D m ϕ b D m ϕ a
B m ϕ

D m ϕ a σ

D m ϕ a σ γ D m ϕ a σ γ B m ϕ ρ B m ϕ ρ

D m ϕ a σ

( + 1, ) = ( , ) + ( , ) + ( , ) − ( , ) + ( , )

− ( , ) −
1

2
ln(1 − 2 ( , ) ) −

1

2
ln(1 − 2 ( , ) ),

( + 1, ) = ( , ) −
1

2
+ ( , ) + ( , ) +

1

2

( , )

1 − 2 ( , )

+
( , ) 2 ( , ) − 2 ( , ) − ( , ) 1 −

1 − 2 ( , )
,

( + 1, ) = ( , ) −
1

2
+ ( , ) + ( , ) +

1

2

( , )

1 − 2 ( , )

+
( , ) 2 ( , ) − 2 ( , ) − ( , ) 1 −

1 − 2 ( , )
,

u u u d

d d u u d d

u u u
u u

u u u u u u u u

u u

d d d
d d

d d d d d d d d

d d

1

1
1
2

2
1 1

2 2

1
1
2

2
1 1

2 2

B2

  







 


 


 






















 





( )( )

f ϕ A m ϕ B m ϕ w C m ϕ w C m ϕ aσ

B m ϕ λ C m ϕ b a h

B m ϕ β y β y β y B m ϕ y

E B m ϕ h C m ϕ aσ γ h

( ) = exp ( − 1, ) + ( − 1, ) + ( − 1, ) − ( − 1, )

+ ( − 1, ) −
1

2
+ ( − 1, )( + )

+ ( − 1, ) +
1

4
+

1

17
+ ( − 1, )

× exp ( − 1, ) ϵ + ( − 1, ) ϵ − 2 ϵ .

t T h

t

d t w
i

t i m
i

t i
i

i t i

t t t t t t

, 1

1

1

=2

5

+1−
=6

22

+1−
=2

22

+2−

1 +1
(1)

+1
(2) 2

+1
(2)

(B2)

1845 of 1847



A useful result is that for a standard normal random variable ϵ,
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Substituting this result in Equation (B2) and matching the terms on the
right‐hand side of Equations (B1) and (B2), we can get the following
recursive formulae,
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B m ϕ

B m ϕ β B m ϕ i
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B m ϕ β B m ϕ i

B m ϕ β i
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( , ) + ( , ) = 1,
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( , ) + ( , ) 6 21,

( , ) = 22.

i

d

w i

m i

m

1 2

1

4 1 +1

1

17 1 +1

1

17 1

The terminal condition is B ϕ ϕ B ϕ(0, ) = , (0, ) = 0i1 for ≥i A ϕ2, (0, ) =
C ϕ(0, ) = 0.

Appendix C

Moment Generating Function Under the HAR‐HNG Model

Let f ϕ( )t T, be the conditional moment generating function (MGF) of yT ,
that is,

f ϕ E ϕy( ) = [exp( )].t T t T,

Assume the MGF takes the following log‐linear form:


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
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f ϕ A m ϕ B m ϕ y C m ϕ h( ) = exp ( , ) + ( , ) + ( , ) ,t T

i

i t i t,
=1

22

+1− (C1)

where m T t= − . Applying the law of iterated expectations to
f ϕ( )t T, , we get
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Substituting the dynamics of yt+1 and ht+1 shows
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Rearranging the terms

A useful result is that for a standard normal random variable ϵ,
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Substituting this result in Equation (C2) and matching the terms on the
right‐hand side of Equations (C1) and (C2), we can get the following
recursive formulae,
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with

≤ ≤

≤ ≤
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The terminal condition is B ϕ ϕ B ϕ(0, ) = , (0, ) = 0i1 for ≥i A ϕ2, (0, ) =
C ϕ(0, ) = 0.
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