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1. Introduction

In order to answer the question of how deep the connection between quiver representa-
tions and Kac–Moody Lie algebras, Ringel [20] introduced the Hall algebra of a finite
dimensional algebra over a finite field, which is called Ringel–Hall algebra. It is based
on the framework of Steinitz–Hall [8,24] on the Hall algebra of finite abelian p-groups.
It is well-known that the Ringel–Hall algebra of a finite dimensional hereditary algebra
provides a realization of the positive (negative) part of the corresponding quantum group,
see [7,20–22].

The Bernstein–Gelfand–Ponomarev reflection functor is an important functor in the
representation theory. It is a special case of tilting functors [2]. Ringel [23] shows that the
Bernstein–Gelfand–Ponomarev reflection functors induce isomorphisms between certain
subalgebras of Ringel–Hall algebras. Obul [16] generalized the Ringel’s work to tilting
functors. Later, Obul [17] extended this result into the tilting modules of finite projective
dimension in the sense of [15]. Geng and Peng [6] proved that each tilting complex induces
the derived equivalence and then an isomorphism between derived Hall algebras.

As a generalization of the classical tilting theory, the concept of silting objects originated
from Keller and Vossieck [13]. More recently, Buan and Zhou [3] gave a generalization
of the classical tilting theorem, called the silting theorem. They described the relations
of torsion pairs between mod A and mod B, where B = EndDb(A)(P) and P is a 2-
term silting complex in Kb(proj A). It provides us with a basic framework to compute the
isomorphisms of subalgebras of Ringel–Hall algebras by the silting theory.
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Now, we present our main result as follows.

Theorem 1.1. Let k be a fixed finite field with q elements, and we set ν = √
q and Q(ν)

be the rational function field of ν. Let A be a finite dimensional k-algebra of finite global
dimension, P a 2-term complex in Kb(proj A) and B = EndKb(proj A)(P). If P is a tilting
complex, then the following statements hold:

(1) The functor HomDb(A)(P,−) induces the isomorphism between two subalgebras
H(T (P)) and H(Y(P)).

(2) The functor HomDb(A)(P, �(−)) induces the isomorphism between two subalgebras
H(F(P)) and H(X (P)).

It is well-known that if P is a 2-term silting complex in Kb(proj A), then H0(P) is a
support τ -tilting A-module, which was introduced by Adachi et al. [1]. It is remarkable
that there is a τ -tilting version of the Brenner–Butler tilting theorem, which was proved
by Treffinger [25]. In this paper, we also give the τ -tilting version of Obul’s work, see
Corollary 3.11.

The paper is organized as follows. In Section 2, we recall some well-known results on
the silting theory and the definition of Ringel–Hall algebras. In Section 3, we prove our
main results.

2. Preliminaries

Let A be a finite dimensional k-algebra where k is a field. We denote by mod A the
category of finitely generated right A-modules. We denote by proj A the full subcategory
of mod A generated by the projective modules. Let Db(A) be the bounded derived category
of mod A, with shift functor � and Kb(proj A) the bounded homotopy category of finitely
generated projective right A-modules.

A complex P is said to be of 2-term if Pi = 0 for i �= −1, 0. Recall that a 2-term
complex P in Kb(proj A) is said to be silting if it satisfies the following two conditions:

(1) HomDb(A)(P, �P)=0;
(2) thick P=Kb(proj A), where thick P is the smallest triangulated subcategory closed

under direct summands containing P.

In addition, if P satisfies HomDb(A)(P, �−1P)=0, then P is said to be tilting.
Let P be a 2-term silting complex in Kb(proj A), and consider the following two full

subcategories of mod A,

T (P) = { X ∈ mod A | HomDb(A)(P, �X) = 0},
F(P) = { Y ∈ mod A | HomDb(A)(P,Y ) = 0}.

Theorem 2.1 [3]. LetP be a 2-term silting complex in Kb(proj A), and B = EndDb(A)(P).
Then the following assertions hold:

(1) The pair (T (P), F(P)) is a torsion pair in mod A.
(2) There is a triangle
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A → P′ f−→ P′′ → �A

with P′, P′′ in add P.
Consider the 2-term complex Q in K b(proj B) induced by the map

HomDb(A)(P, f ) : HomDb(A)(P, P′) −→ HomDb(A)(P, P′′).

(3) Q is a 2-term silting complex in Kb(proj B) such that

T (Q) = X (P) = HomDb(A)(P, �F(P))

F(Q) = Y(P) = HomDb(A)(P, T (P)).

(4) There is an algebra epimorphism �P : A → Ā = EndDb(B)(Q).
(5) �P is an isomorphism if and only if P is tilting.
(6) Let �∗: mod Ā→ mod A be the inclusion functor. Then one obtains the quasi-inverse

equivalences between the pair (T (P), F(P)) and (T (Q), F(Q)). Then

T (P)

Hom
Db(A)

(P,−)

F(Q)
�∗Hom

Db(B)
(Q,�−)

,

F(P)

Hom
Db(A)

(P,�−)

T (Q)
�∗Hom

Db(B)
(Q,−)

.

In what follows, the symbol Q always denotes the induced complex Q. It is a 2-term silting
complex in Kb(proj B) such that the induced pair (T (Q),F(Q)) = (X (P),Y(P)).

Now, we recall the basic definition of Ringel–Hall algebras. Let A be a finite dimen-
sional k-algebra, and let Iso(A) be the set of isomorphism classes of finite dimensional
A-modules. For any finite set S, we denote its cardinality by |S|.

DEFINITION 2.2 [12,19,20]

Let k be a fixed finite field with q elements, and we set ν = √
q and Q(ν) be the rational

function field of ν. For any [M], [N ], and [L] ∈ Iso(A), let GL
MN be the Hall number

defined as (Riedtmann’s Formula, see also [18])

GL
MN := |AutA(L)||Ext1A(M, N )L |

|AutA(M)||AutA(N )||HomA(M,N)| ,

where Ext1A(M, N )L is the set of all classes of extensions of M by N which are isomor-
phic to L . The twisted Ringel–Hall algebra H(A) is a free Q(ν)-module with the basis
{u[M]|[M] ∈ Iso(A)} and the multiplication is given by

u[M] ∗ u[N ] = ν〈dim M,dim N〉A
∑

[L]∈Iso(A)

GL
MNu[L].

Remark 2.3. Let H(T (P)), H(F(P)) be the Q(v)-submodules with the basis {u[M]|M ∈
T (P)} and {u[N ]|N ∈ F(P)}, respectively. Since the subcategories T (P), F(P) are closed



   70 Page 4 of 13 Proc. Indian Acad. Sci. (Math. Sci.)          (2022) 132:70 

under extensions, H(T (P)), H(F(P)) are subalgebras of H(A) Similarly, H(X (P)),
H(Y(P)) are subalgebras of H(B).

3. Main result

The following result was proved in [10], in the setting of abelian categories with arbitrary
coproducts. Indeed, it is also true in our case. The proof of the following lemma has
contained in [3,11].

Lemma 3.1 [3,10,11]. For any X ∈ mod A, HomDb(A)(P, �i X) = 0 for any i < 0 and
i > 1.

Now, we should recall the definition of the Grothendieck group of the finite dimensional
k-algebra A. Let F be the free abelian group generated by representatives of the isomor-
phism classes of objects in mod A. We denote by [X ] such a representative. Let F0 be the
subgroup generated by [X ] − [Y ] + [Z ] for all exact sequences 0 → X → Y → Z → 0
in mod A. The Grothendieck group K0(A) is by definition the factor group F/F0.

PROPOSITION 3.2

Let P be a 2-term silting complex in Kb(proj A) and B = EndDb(A)(P). Then the corre-
spondence

dim M 
→
1∑

i=0

(−1)idim HomDb(A)(P, �iM),

where M is a right A-module, induces the homomorphism f : K0(A) → K0(B). Similarly,
the correspondence

dim N 
→
1∑

i=0

(−1)idim �∗HomDb(B)(Q, �iN),

where N is a right B-module, induces the homomorphism g : K0(B) → K0(A).

Proof. Since P is a 2-term silting complex, then by Lemma 3.1, we know that
HomDb(A)(P, �−1X) = 0 and HomDb(A)(P, �i X) = 0 for any X ∈ mod A and i > 1.
For any short exact sequence 0 → L → M → N → 0 in mod A, there exists a distin-
guished triangle

L → M → N → �L . (1)

Applying the functor HomDb(A)(P,−) to the sequence (1), we have the following long
exact sequence in mod B,

0 → HomDb(A)(P, L) → HomDb(A)(P, M) → HomDb(A)(P, N )

→ HomDb(A)(P, �L) → HomDb(A)(P, �M) → HomDb(A)(P, �N ) → 0.
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Then we have the following equations:

dim HomDb(A)(P, M) − dim HomDb(A)(P, �M)

= [dim HomDb(A)(P, L) − dim HomDb(A)(P, �L)]
+ [dim HomDb(A)(P, N ) − dim HomDb(A)(P, �N )].

Therefore, the given correspondence defines indeed a group homomorphism K0(A) →
K0(B). �

Lemma 3.3. Let M be an arbitrary module in mod B. Then the following hold:

(1) HomDb(A)(P,�∗HomDb(B)(Q, M)) = 0.
(2) HomDb(A)(P, ��∗HomDb(B)(Q, �M)) = 0.

Proof. Let

0 → tM → M → M/tM → 0 (2)

be the canonical sequence in (T (Q), F(Q)). Applying the functor HomDb(A)(Q,−) to the
sequence (2), by Lemma 3.1 and �∗ is an exact functor, we have the following long exact
sequence:

0 →�∗HomDb(B)(Q, tM) → �∗HomDb(B)(Q, M) → �∗HomDb(B)(Q, M/tM)

→�∗HomDb(B)(Q, �tM) → �∗HomDb(B)(Q, �M)

→�∗HomDb(B)(Q, �M/tM) → 0.

Since tM ∈ T (Q) and M/tM ∈ F(Q), we obtain isomorphisms

�∗HomDb(B)(Q, M) ∼= �∗HomDb(B)(Q, tM),

�∗HomDb(B)(Q, �M) ∼= �∗HomDb(B)(Q, �M/tM).

By Theorem 2.1(6), we know that

�∗HomDb(B)(Q, tM) ∈ F(P) and�∗HomDb(B)(Q, �M/tM) ∈ T (P).

It implies that

HomDb(A)(P,�∗HomDb(B)(Q, M)) ∼= HomDb(A)(P,�∗HomDb(B)(Q, tM)) = 0

HomDb(A)(P, ��∗HomDb(B)(Q, �M))

∼= HomDb(A)(P, ��∗HomDb(B)(Q, �M/tM)) = 0. �

Lemma 3.4. Let X be an arbitrary module in mod A. Then the following hold:

(1) �∗HomDb(B)(Q, HomDb(A)(P, X)) = 0.
(2) �∗HomDb(B)(Q, �HomDb(A)(P, �X)) = 0.
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Proof. Let

0 → t X → X → X/t X → 0 (3)

be the canonical sequence in (T (P), F(P)). Applying the functor HomDb(A)(P,−) to the
sequence (3), by Lemma 3.1, we have the following long exact sequence:

0 → HomDb(A)(P, t X) → HomDb(A)(P, X) → HomDb(A)(P, M/tM)

→ HomDb(A)(P, �t X) → HomDb(A)(P, �X)→HomDb(A)(P, �X/t X) → 0.

Since t X ∈ T (P) and X/t X ∈ F(P), we obtain isomorphisms

HomDb(A)(P, M) ∼= HomDb(A)(P, t X),

HomDb(A)(P, �M) ∼= HomDb(A)(P, �X/t X).

By Theorem 2.1(6), we know that

HomDb(B)(P, t X) ∈ F(Q) and HomDb(A)(Q, �X/t X) ∈ T (Q).

It implies that

�∗HomDb(B)(Q, HomDb(A)(P, X)) ∼= �∗HomDb(B)(Q, HomDb(A)(P, t X))=0

�∗HomDb(B)(Q, �HomDb(A)(P, �X))

∼= �∗HomDb(B)(Q, �HomDb(A)(P, �X/t X))=0.

�

PROPOSITION 3.5

Let P be a 2-term silting complex in Kb(proj A) and B = EndDb(A)(P). Then the corre-
spondence

dim M 
→
1∑

i=0

(−1)idim HomDb(A)(P, �i M),

where M is a right A-module, induces the isomorphism f : K0(A) → K0(B).

Proof. For any simple module S in mod B, it is easy to see that S ∈ T (Q)

or S ∈ F(Q). If S ∈ T (Q), then S ∼= HomDb(A)(P, ��∗HomDb(B)(Q, S)) and
by Lemma 3.3(1), we have HomDb(A)(P,�∗HomDb(B)(Q, S)) = 0. In this case,
we know that f (−dim �∗HomDb(B)(Q, S)) = dim S. If S ∈ F(Q), then there
is an isomorphism S ∼= HomDb(A)(P,�∗HomDb(B)(Q, �S)) and by Lemma 3.3(2),
we have that HomDb(A)(P, ��∗HomDb(B)(Q, �S)) = 0. Therefore, we obtain that
f (dim �∗HomDb(B)(Q, �S)) = dim S.

Similarly, by Lemma 3.4, one can prove that g : K0(B) → K0(A) is also epic. Therefore,
the ranks of K0(A) and K0(B) are equal. �
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Let C be a triangulated category. Let F be the free abelian group generated by representa-
tives of the isomorphism classes of objects in C. We denote by [X ] such a representative.
Let F0 be the subgroup generated by [X ]−[Y ]+[Z ] for all triangles X → Y → Z → �X
in C. The Grothendieck group K0(C) is by definition the factor group F/F0.

COROLLARY 3.6

Let P be a 2-term silting complex in Kb(proj A) and B = EndDb(A)(P). Then f in
Proposition 3.5 induces the isomorphism K0(Db(A)) ∼= K0(Db(B)).

Proof. From [9, Chapter III, Lemma 1.2], we know that the canonical embedding of
mod A into Db(A) induces an isomorphism of K0(A) with K0(Db(A)). Similarly, there
is an isomorphism K0(B) ∼= K0(Db(B)). Thus, from Proposition 3.5, f induces the
isomorphism K0(Db(A)) ∼= K0(Db(B)). �

Let A be a finite dimensional k-algebra and X = (Xi , di ) be a bounded complex
in Db(A). From [9, Chapter III], the dimension vector of X is defined as dim X =∑

i∈Z(−1)idim Xi. The preceding sum is finite due to our hypothesis on X.
Assume now that A is an algebra of finite global dimension. We recall from [9, Chapter

III, Lemma 1.4] that the Euler characteristic of Db(A) is the bilinear form on K0(Db(A))

defined by

〈dim X, dim Y〉A =
∞∑

i∈Z
(−1)idimkHomDb(A)(X, �iY),

where X, Y are complexes in Db(A). In particular, if X, Y are 0-stalk complex, then

〈dim X, dim Y〉A =
∞∑

i=0

(−1)idimkExtiA(X, Y).

PROPOSITION 3.7

Let A be an algebra of finite global dimension, P a 2-term complex in Kb(proj A) and
B = EndDb(A)(P). If P is a tilting complex, then the map f in Proposition 3.2 is an
isometry of the Euler characteristics of A and B. That is, for any complexes X and Y, we
have

〈dim X, dim Y〉A = 〈f (dim X), f (dim Y)〉B.

In particular, for any A-modules M and N , we have

〈dim M, dim N〉A = 〈f (dim M), f (dim N)〉B.

Proof. Assume that P : P−1 d−→ P0, where all Pi are finitely generated projective modules.
Let P1, . . . , Pn denote the pairwise nonisomorphic indecomposable summands of P. We
claim that the vectors dim Pi, where 1 ≤ i ≤ n, constitute a basis of K0(Db(A)). Since
Kb(proj A) is a Hom-finite Krull–Schmidt category, HomKb(proj A)(P,−) : add P →
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proj B is an equivalence, by [14, Proposition 2.3]. Thus, the B-modules

HomDb(A) (P, P1) , . . . , HomDb(A) (P, Pn)

form a complete set of representatives of the isomorphism classes of indecomposable
projective modules. From [5], B also has finite global dimension. Thus, the Euler charac-
teristics of K0(Db(B)) is well-defined.

Note that there is a distinguished triangle

P−1
i

−d−→ P0
i → Pi → �P−1

i . (4)

Note that for any i < −1 and j > 1, HomDb(A)(P, �iP) = HomDb(A)(P, � jP) = 0 since
P is a 2-term silting complex. Applying the functor HomDb(A)(P,−) to the sequence (4),
we have the following exact sequence in mod B,

0 HomDb(A)

(
P, �−1Pi

)
HomDb(A)

(
P, P−1

i

)
HomDb(A)

(
P, P0

i

)

HomDb(A) (P, Pi ) HomDb(A)

(
P, �P−1

i

)
HomDb(A)

(
P, �P0

i

)
0.

Thus, we have

dim HomDb(A)(P, Pi ) − dim HomDb(A)(P, �−1Pi )

= dim HomDb(A)(P, P0
i ) − dim HomDb(A)(P, �P0

i )

− dim HomDb(A)(P, P−1
i ) + dim HomDb(A)(P, �P−1

i ).

It follows that

f (dim Pi ) = f (dim P0
i ) − f (dim P−1

i )

= dim HomDb(A) (P, Pi ) − dim HomDb(A)(P, �−1Pi )

= dim HomDb(A) (P, Pi ) ,

since P is a tilting complex.
Then f (dim Pi ), where 1 ≤ i ≤ n constitute a basis of K0(Db(B)). Because, by

Corollary 3.6, f is an isomorphism, this implies our claim.
Also, the projectivity of the B-modules HomDb(A) (P, Pi ) and [4, Lemma 3.5] imply

that, for any i, j such that 1 ≤ i, j ≤ n,

〈 f (dim Pi ), f (dim P j )〉B = 〈dim HomDb(A)(P, Pi ), dim HomDb(A)(P, P j )〉B
= dimkHomB(HomDb(A)(P, Pi ), HomDb(A)(P, P j ))

= dimkHomDb(A)(Pi , P j )

= 〈dim Pi , dim P j 〉A.

It completes the proof. �
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Now, we are in position to prove our main results.

Theorem 3.8. Let k be a fixed finite field with q elements, and we set ν = √
q and Q(ν)

be the rational function field of ν. Let A be a finite dimensional k-algebra of finite global
dimension, P a 2-term complex in Kb(proj A) and B = EndDb(A)(P). If P is a tilting
complex, then the following statements hold:

(1) The functor HomDb(A)(P,−) induces the isomorphism between two subalgebras
H(T (P)) and H(Y(P)).

(2) The functor HomDb(A)(P, �(−)) induces the isomorphism between two subalgebras
H(F(P)) and H(X (P)).

Proof.

(1) For convenience, we set F = HomDb(A)(P,−) : T (P) → Y(P) and its quasi-inverse
G = �∗Hom

Db(B)
(Q, �−). We define the linear map φ : H(T (P)) → H(Y(P)) by

φ(u[M]) = u[F(M)] for any M ∈ T (P). Clearly, it is well-defined. Since F is an equiv-
alence between T (P) and Y(P), φ is a bijection. Thus, it suffices to show that φ is a
homomorphism.

First, we claim that GL
MN = GF(L)

F(M)F(N ) for any M , N ∈ T (P).

For any M , N ∈ mod A, set E L
MN = {( f, g) : 0 → N

f−→ L
g−→ M → 0}. By

Riedtmann’s formula, we have

|E L
MN | = |AutA(L)||Ext1A(M, N )L |

|HomA(M, N )| .

Then GL
MN = |E L

MN |
|AutA(M)||AutA(N )| . Since F is a quasi-isomorphism on T (P), thus,

AutA(M) ∼= AutB(F(M)) and AutA(N ) ∼= AutB(F(N )) for any M , N ∈ T (P). Hence,
it is enough to show that |E L

MN | = |E F(L)
F(M)F(N )| for any M , N ∈ T (P).

For any short exact sequence 0 → N
f−→ L

g−→ M → 0 in T (P), we have a distinguished
triangle

N
f−→ L

g−→ M → �N . (5)

Applying the functor F to (5), by Lemma 3.1 and N ∈ Ker HomA(P, �(−)), we have the
exact sequence

0 → F(N )
F( f )−−−→ F(L)

F(g)−−→ F(M) → 0.

Hence, F induces a map F̄ from E L
MN to E F(L)

F(M)F(N ) given by F̄(( f, g)) = (F( f ), F(g))

for any ( f, g) ∈ E L
MN . For any exact sequence 0 → F(N )

F( f )−−−→ F(L)
F(g)−−→ F(M) → 0,

applying G, we have the following commutative diagram:

0 GF(N )
GF( f )

∼=

GF(L)
GF(g)

∼=

GF(M)

∼=

0

0 N
f

L
g

M 0
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Thus, F̄ is surjective. Similarly, one can prove that G induces a surjective map from
E F(L)
F(M)F(N ) to E L

MN . Thus, |E L
MN | = |E F(L)

F(M)F(N )|.
Second, we claim that 〈dim M, dim N 〉A = 〈dim F(M), dim F(N )〉B for any M ,

N ∈ T (P).
Indeed, for any X ∈ T (P), because HomDb(A)(P, �M) = 0, f (dim X) = dim F(X).

Thus, by Proposition 3.7, we have

〈dim F(M), dim F(N )〉B = 〈 f (dim M), f (dim N )〉B
= 〈dim M, dim N 〉A.

Finally, we check that φ(u[M] ∗ u[M]) = φ(u[M]) ∗ φ(u[M]) for any M , N ∈ T (P).
By the above results, we obtain that

φ(u[M] ∗ u[M]) = φ(ν〈dim M,dim N 〉A ∑

[L]
GL
MNu[L])

= ν〈dim M,dim N 〉A ∑

[L]
GL
MNφ(u[L])

= ν〈dim M,dim N 〉A ∑

[L]
GL
MNuφ([L])

= ν〈dim F(M),dim F(N )〉B ∑

[F(L)]
GF(L)
F(M)F(N )u[F(L)]

= u[F(M)] ∗ u[F(N )]
= φ(u[M]) ∗ φ(u[M]).

Therefore, φ is an isomorphism. Similarly, one can prove the statement (2). �

At last, by Theorem 3.8, we give the τ -tilting version of [16, Theorem 1 and 2].
Let P is a 2-term silting complex in Kb(proj A). Recall that P is said to be separating if

the induced torsion pair (T (P), F(P)) in mod A is split. By [3], if P is separating, then
P is a tilting complex.

Next, we recall some notions in τ -tilting theory, which will be used.

DEFINITION 3.9 [2]

Let M be a module in mod A.

(1) M is called τ -rigid if HomA(M, τM) = 0.
(2) M is called τ -tilting if it is τ -rigid and |M | = |A|.
(3) M is called support τ -tilting if it is a τ -tilting (A/〈e〉)-module for some idempotent

e of A.

DEFINITION 3.10 [1]

Let (M , P) be a pair with M ∈ mod A and P ∈ proj A.

(1) We call (M , P) a τ -rigid pair if M is τ -rigid and HomA(P, M) = 0.
(2) We call (M , P) a support τ -tilting pair if (M , P) is τ -rigid and |M | + |P| = |A|.
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Let M be an object in mod A and B = EndA(M). We set two classes of modules
T (M) = Fac M and F(M) = KerHomA(M,−). By [1, Proposition 2.16], one can see
that for a support τ -tilting module M , there is a torsion pair (T (M), F(M)). Moreover,
there is a torsion pair (X (M), Y(M)) in mod B induced by the support τ -tilting module
M , see [25].

COROLLARY 3.11

Let k be a fixed finite field with q elements, and we set ν = √
q and Q(ν) be the rational

function field of ν. Let A be a finite dimensional k-algebra of finite global dimension, and

(M , P) a support τ -tilting pair. If P = (P1 ⊕ P
( f,0)−−→ P0) is a tilting complex, then there

are two isomorphisms of Ringel–Hall subalgebras:

(1) H(T (M)) ∼= H(Y(M)),
(2) H(F(M)) ∼= H(X (M)).

In particular, M is a tilting module or the torsion pair (T (M), F(M)) is split, and the
above isomorphisms hold.

Proof. Let (M , P) be a support τ -tilting pair. Following [1, Theorem 3.2], we know that

P = (P1 ⊕ P
( f,0)−−→ P0) is a 2-term silting complex in Kb(proj A) such that H0(P) = M ,

where P1
f−→ P0 is a minimal projective presentation of M . By [3, Proposition 2.4],

T (P) = T (M) and so (T (P), F(P))=(T (M), F(M)). From [3, Lemma 2.7], we have a
functorial isomorphism

HomDb(A)(P, X) ∼= HomA(M, X),

for any X ∈ mod A. Moreover, by [25, Corollary 2.2], the functor HomA(M,−) :
T (M) → Y(M) is an equivalence of categories. Thus, we have that Y(P) = Y(M)

and hence X (P) = X (M). By Theorem 3.8, we have the isomorphisms.
In particular, if (T (M), F(M)) is split, then P is separating and hence it is a tilting

complex. If M is a tilting module, then P = 0 and P is just a tilting complex. It completes
the proof. �

Finally, we provide an example to illustrate that Theorem 3.8 gives a proper generalization
of obul’s work.

Example 3.12. Let A be a path algebra given by the following quiver:

3 2 1 .
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The AR-quiver is given by

1 2 3

2
1

3
2

3
2
1

Let P be a 2-term complex given by the direct sums of the following complexes in
Kb(proj A):

P1 = 1 → 2
1
, P2 = 1 →

3
2
1
, P3 = 1 → 0.

It is easy to check that P is a silting complex. Let T = T (P) and F = F(P). Then one
can get a splitting torsion pair (T , F) as follows:

T = add

{
2 ,

3
2
, 3

}
,

F = add

⎧
⎨

⎩ 1 ,
2
1
,

3
2
1

⎫
⎬

⎭ .

Thus, P is a separating silting complex and so is a tilting complex. Note that this torsion
pair cannot be induced by any tilting module in mod A. Indeed, P is given by the support

τ -tilting pair

(
2 ⊕ 3

2
, 1

)
.
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