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1. Introduction

In 1978, Auslander introduced the concept of morphisms being determined by objects 
in his Philadelphia notes [5,6]. This theory is closely related to many aspects of repre-
sentation theory of algebras, especially, Auslander-Reiten theory, which plays a central 
role in the representation theory of algebras. It gives a conceptual explanation for the 
conception of irreducible morphisms and the existence of left and right almost split mor-
phisms from the categorical point of view. In fact, it provides an approach to construct 
and organize morphisms in additive categories, generalizing previous work of Auslander 
and Reiten on almost split sequences. Meanwhile, using the theory of morphisms being 
determined by objects, Auslander provided a method to construct or classify morphisms 
in a fixed category, that is, the so-called Auslander bijection. For this aspect, recently, 
many scholars have further developed and explained this theory, such as Ringel [30,31], 
Chen-Le [13], Zhao-Tan-Huang [36], etc.

Krause [24] showed that some of Auslander’s results have an analogue for triangulated 
categories. For example, he showed that in a Hom-finite Krull-Schmidt triangulated 
category, the existence of the Serre functor is equivalent to that this category admits 
right determined morphisms. Jiao and Le [22] introduced the notions of having right 
(left) stably determined deflations (inflations) in exact categories. In that survey, they 
proved that in a Hom-finite Krull-Schmidt exact category, the existence of the Auslander-
Reiten-Serre duality is equivalent to that this category admits right stably determined 
deflations. Recently, Zhao, Tan and Huang [35] unified these two versions of results into 
the extriangulated categories.

Covering theory, originated from topology, is widely used in algebraic topology [18]. 
Covering technique was introduced into representation theory of algebras and developed 
by Riedtmann [29], Bongartz-Gabriel [11], Gabriel [17], Dowbor-Lenzing-Skowroński [15], 
Waschbüsch [34], Martínez-Villa, de la Peña [27], Cibils-Eduardo [14], and so on. The 
classical Galois covering technique has been playing an important role in the representa-
tion theory of finite dimensional algebras. This theory reduces problems of the module 
category of an algebra A (whose structure is more complicated) to that of a category 
C with an action of a group G such that A is equivalent to the orbit category C/G, 
which is easier to be understood. The category C is usually regarded as the “étale” of 
the algebra A.

The classical setting of covering technique requires the stringent conditions on cate-
gories, such as, local boundedness and freeness of group action. In fact, these assumptions 
are not easy to realize in general case. Thus it makes very inconvenient to apply the cov-
ering technique to usual additive categories such as the bounded homotopy category of 
finitely generated projective modules over a ring or even the module category. To over-
come the difficulty, Asashiba [1] introduced the notion of G-(pre)coverings. Strengthening 
the notion of G-coverings, Bautista and Liu [9] defined the notion of Galois G-coverings 
for general linear categories. They showed that a Galois G-covering between Krull-
Schmidt categories preserves irreducible morphisms and almost split sequences. Later, 
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Bautista and Liu [10] showed that for a locally bounded linear category A with rad-
ical squared zero, the bounded derived category Db(modA) of finite dimensional left 
A-modules admits a Galois G-covering. As an application of this result, they described 
the indecomposable objects of Db(modA) and obtained a complete description of the 
shapes of its Auslander-Reiten components. Recently, Asashiba, Hafezi and Vahed [2]
constructed G-precoverings of bounded derived categories, singularity categories and 
Gorenstein defect categories. Then they obtained a Gorenstein version of Gabriel’s the-
orem. Using this result, they investigated the number of summands in a decomposition 
of the middle term of almost split sequences over monomial algebras.

Inspired by these, one may naturally ask, as a generalization of almost split morphisms, 
how morphisms being determined by objects behave under G-coverings? Following the 
philosophy of Bautista and Liu [9], we expect to show that G-coverings preserve mor-
phisms determined by objects.

The paper is organized as follows.
In Section 2, we will recall some terminologies and some preliminary results needed 

in this paper. We also define the notion of normal G-coverings, which is slightly different 
from Galois G-coverings in the sense of [9].

In Section 3, we prove that given a G-covering F : A → B between two Krull-Schmidt 
categories, F preserves morphisms determined by objects. On the other hand, under 
some suitable conditions, we prove that if B has right determined morphisms, then so 
does A.

In Section 4, we apply the results in Section 3 to reformulate Bautista and Liu’s frame-
work. More precisely, for a normal G-covering F between two Krull-Schmidt categories, 
we prove that F preserves sink maps and source maps. It is remarkable that, compared 
with [9], our results do not require that the group action is locally bounded.

In Section 5, we give a G-covering between two relative stable categories, which unifies 
[2, Theorem 4.5] and [19, Proposition 2.6]. As an application, we provide a reduction 
technique for dealing with the existence of Serre functors in the stable categories of 
Gorenstein projective objects.

2. Preliminaries

Throughout this paper, all categories are skeletally small, and morphisms are com-
posed from the right to the left. Let R be a commutative artin ring with radical r. An 
R-linear category is a category in which the morphism sets are R-modules such that the 
composition of morphisms is R-bilinear. All functors between R-linear categories are as-
sumed to be R-linear. An R-linear category is called additive if it has finite direct sums. 
In the sequel, unless otherwise stated, a linear category refers to an R-linear category, 
an additive category refers to an additive R-linear category. Let A be a linear category. 
Denote by A0 the class of objects of A.

Let k be a field. A k-linear category A is said to be locally bounded if it satisfies the 
following conditions:
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(1) A is basic (i.e., distinct objects of A are not isomorphic);
(2) A is semiperfect (i.e., A(X, X) is a local algebra, for any X ∈ A0);
(3) For each X ∈ A0, 

∑
Y ∈A0

dimkA(X, Y ) < ∞ and 
∑

Y ∈A0
dimkA(Y, X) < ∞.

A linear category is called Hom-finite if the morphism modules are of finite R-length. 
Moreover, a Krull-Schmidt category is an additive category in which every non-zero 
object is a finite direct sum of objects with local endomorphism algebras. An additive 
category has split idempotents if every idempotent endomorphism φ of an object X splits, 
that is, there exists a factorization X

u−→ Y
v−→ X of φ with uv = idY and vu = φ.

It is well-known that A is a Krull-Schmidt category if and only if it has split idem-
potents and the endomorphism ring of every object is semi-perfect. In particular, in this 
case, an object X ∈ A is indecomposable if and only if EndA(X) is local. For a Krull-
Schmidt category A, we denote by indA the full subcategory of representatives of the 
isomorphism classes of indecomposable objects in A. For more details, one can refer for 
example to [25, Corollary 4.4] or [12, Theorem A.1].

Let A be a linear category. We define the category of left (resp. right) A-modules, 
denoted by ModA (resp. ModAop), to be the functor category Fun(A, ModR) (resp. 
Fun(Aop, ModR)) consisting of all covariant (resp. contravariant) functors. Moreover, 
ModA has enough projective objects, that is, for any M ∈ ModA, there is an epimorphism 
P → M in ModA, where P is a projective A-module. For any x ∈ A0, the representable 
functor P [x] = A(x, −) is a projective A-module in ModA. We say that a left A-module 
M is finitely generated if there is a finite family I of objects of A and an exact sequence

⊕x∈IP [x] → M → 0.

A locally bounded linear category A is said to be Frobenius (or self-injective) if every 
finitely generated projective A-module is injective.

We say that a left A-module M is finitely presented (or coherent) if there are finite 
families I, J of objects of A and an exact sequence

⊕y∈JP [y] → ⊕x∈IP [x] → M → 0.

We denote by modA the subcategory of ModA consisting of all finitely presented A-
modules.

Let modR denote the category of finitely presented R-modules and fix an injective 
envelope E = E(R/r) over R. This provides the duality

D = HomR(−, E) : modR −→ modR.

Recall that a Hom-finite Krull-Schmidt linear category A is called a dualising R-variety
[7] if the assignment F → DF induces an equivalence

(modA)op ∼−→ mod(Aop).
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Let A be a linear category equipped with an action of a group G, that is, there exists 
a group homomorphism ρ : G → Aut(A), where Aut(A) is the group of automorphisms 
of A. Set gX := ρ(g)(X), and gf := ρ(g)(f) for any g ∈ G, X, Y ∈ A0 and f ∈ A(X, Y ).

Definition 2.1 ([9]). Let A be a linear category with G a group acting on A. The G-action 
on A is called admissible if it satisfies the following conditions.

(1) The G-action is free, that is, gX � X for any indecomposable object X of A and 
any non-identity g ∈ G.

(2) The G-action is locally bounded, that is, for any indecomposable objects X and Y of 
A, A(X, gY ) = 0 for all but finitely many g ∈ G.

Let F : A → B be a functor between linear categories. Recall that for g ∈ G, a 
functorial (iso)morphism δg : F ◦ g → F consists of (iso)morphisms δg,X : (F ◦ g)(X) →
F (X) for any X ∈ A0, which are natural in X.

Definition 2.2 ([1]). Let A, B be linear categories with G a group acting on A. A functor 
F : A → B is called G-stable provided that there exist functorial isomorphisms δg :
F ◦ g → F with all g ∈ G, such that the following diagram is commutative

F (hX) = (F ◦ h)(X)

δh,X

(F ◦ gh)(X) = (F ◦ g)(hX)

δg,hX

δgh,X

F (X),

that is, δh,Xδg,hX = δgh,X for any g, h ∈ G and X ∈ A0. In this case, we call δ = (δg)g∈G

a G-stabilizer for F .

Remark 2.3 ([9]).

(1) By definition, δ−1
g,X = δg−1,gX for g ∈ G and X ∈ A0; δe = idF , where e is the 

identity of G.
(2) A G-stable functor F : A → B is said to be G-invariant if the G-stabilizer δ satisfies 

δg = idF for any g ∈ G.

Definition 2.4 ([1]). Let A, B be linear categories with G a group acting on A. A functor 
F : A → B is called a G-precovering provided that F has a G-stabilizer δ such that, for 
any X, Y ∈ A0, the following two maps are isomorphisms:

FX,Y :
⊕
g∈G

A(X, gY ) −→ B(F (X), F (Y )), (ug)g∈G �→
∑
g∈G

δg,Y F (ug)

FX,Y :
⊕

A(gX, Y ) −→ B(F (X), F (Y )), (vg)g∈G �→
∑

F (vg)δ−1
g,X .
g∈G g∈G
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Definition 2.5 ([1]). Let A, B be linear categories with G a group acting on A. A G-
precovering F : A → B is called a G-covering provided that F is dense, in the sense that 
for any X ′ ∈ B0, there exists an X ∈ A0 such that X ′ is isomorphic to F (X) in B.

Lemma 2.6 ([9]). Let A, B be linear categories with G a group acting on A and let 
F : A → B be a G-precovering with a G-stabilizer δ.

(1) For any X, Y ∈ A0, we have the following decompositions

B(F (X), F (Y )) =
⊕
g∈G

δg,Y F (A(X, gY )) =
⊕
h∈G

F (A(hX, Y ))δ−1
h,X .

(2) The functor F is faithful.

Remark 2.7. By the direct sum decompositions in Lemma 2.6 (1), for any u ∈
B(F (X), F (Y )), we can write u =

∑
g∈G δg,Y F (ug) =

∑
h∈G F (vh)δ−1

h,X , where ug ∈
A(X, gY ) and vh ∈ A(hX, Y ) satisfy ug = 0 and vh = 0 for all but finitely many 
g, h ∈ G, respectively.

Lemma 2.8 ([9]). Let A, B be linear categories with G a group acting on A and let 
F : A → B be a G-precovering. Consider a morphism u : X → Y in A.

(1) If v : X → Z or v : Z → Y is a morphism in A, then v factorizes through u if and 
only if F (v) factorizes through F (u).

(2) The morphism u is a section, a retraction, or an isomorphism if and only if F (u) is 
a section, a retraction, or an isomorphism, respectively.

Definition 2.9. Let A, B be two linear categories with G a group acting freely on A and 
let F : A → B be a G-covering. Then F is said to be a normal G-covering provided that 
the following conditions are satisfied.

(1) For any X ∈ A0 with EndA(X) is local, EndB(F (X)) is a local ring.
(2) Let X, Y ∈ A0 with EndA(X) and EndA(Y ) local. If F (X) ∼= F (Y ), then there 

exists some g ∈ G such that Y ∼= gX.

Definition 2.10 ([9, Definition 2.8]). Let A, B be two linear categories with G a group 
acting admissibly on A and let F : A → B be a G-covering. F is said to be a Galois 
G-covering provided that the following conditions are satisfied.

(1) If X ∈ A0 is indecomposable, then F (X) is indecomposable.
(2) If X, Y ∈ A0 are indecomposable with F (X) ∼= F (Y ), then there exists some g ∈ G

such that Y ∼= gX.
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Remark 2.11. If A is a Krull-Schmidt category and the G-action on A is admissible, then 
the notion of the normal G-covering coincides with that of the Galois G-covering.

Definition 2.12 ([1]). Let A be a linear category with a G-action. The orbit category 
A/G of A by G is defined as follows.

(1) The class of objects of A/G is equal to that of A.
(2) For each x, y ∈ (A/G)0, we set

A/G(x, y) := (Π′(x, y))G,

where

Π′(x, y) :=
{
f =(fβ,α)(α,β) ∈

∏
(α,β)∈G×G

A(αx, βy)
∣∣∣ f is row finite and column finite

}

and (−)G stands for the set of G-invariant elements, namely

(−)G :=
{

(fβ,α)(α,β) ∈ Π′(x, y)
∣∣∣ ∀ γ ∈ G, fγβ,γα = γ(fβ,α)

}
.

In the above, f is said to be row finite (resp. column finite) if for any α ∈ G the set 
{β ∈ G | fα,β 
= 0} (resp. {β ∈ G | fβ,α 
= 0}) is finite.

(3) For any composable morphisms x 
f−→ y

g−→ z in A/G, we set

gf :=
( ∑

γ∈G

gβ,γfγ,α

)
(α,β)∈G×G

∈ A/G(x, z).

Remark 2.13. Let A be a locally bounded linear category. If the G-action on A is free, 
then the orbit category A/G defined above is equivalent to the classical orbit category 
A/0G defined as follows:

(1) (A/0G)0 = {Gx| x ∈ A0};
(2) For any x, y ∈ A0, the morphism set A/0G(Gx, Gy) is{

(fp,q) ∈
∏

(p,q)∈Gx×Gy

A(p, q)
∣∣∣ f is row finite and column finite and

faq,ap = a(fq,p), ∀ a ∈ G
}
.

Finally, assume that A is an additive category. The radical radA(−, −) of A is the 
(two-sided) ideal of A defined by

radA(X,Y ) := { f ∈ HomA(X,Y ) | idX − gf is invertible for each g : Y → X}
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for any two objects X and Y in A. A morphism f : X → Y is said to be radical 
if f ∈ radA(X, Y ). Furthermore, radA(X, X) ⊆ EndA(X) coincides with the Jacobson 
radical J(EndA(X)) of the ring EndA(X). It is well-known that if X = X1⊕X2⊕· · ·⊕Xn

and Y = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym are objects of A, then a morphism

f =

⎡⎢⎣
f11 f12 ··· f1n
f21 f22 ··· f2n

...
...

. . .
...

fm1 fm2 ··· fmn

⎤⎥⎦ : X → Y,

where each fji ∈ HomA(Xi, Yj), belongs to radA(X, Y ) if and only if each fji ∈
radA(Xi, Yj).

Let A be an additive category. For any two objects X, Y in A with EndA(X) and 
EndA(Y ) local rings, radA(X, Y ) is the set of all non-isomorphisms from X to Y in A. 
In particular, if X � Y , then radA(X, Y ) = HomA(X, Y ), see [3, Appendix A3]. For 
more details, one can see [8,23,25].

3. Morphisms determined by objects

Definition 3.1 ([5]). Let A be an additive category. Fix an object C in A. A morphism 
α : X → Y in A is right determined by the object C if for every morphism α′ : X ′ → Y

the following are equivalent:

(RD1) α′ factors through α;
(RD2) for every φ : C → X ′ the composite α′φ factors through α.

C
φ

X ′ α′

Y

X
α

Y

A morphism is left determined by C if it is right determined by C when viewed as a 
morphism in the opposite category.

Remark 3.2. We denote by ImHom(C, α) the image of Hom(C, α) : Hom(C, X) →
Hom(C, Y ). Then [RD2] means that ImHom(C, α′) ⊆ ImHom(C, α).

Example 3.3 ([24]). Let C be a partially ordered set, viewed as a category, and fix a 
morphism α : x → y, which means that x ≤ y. If x = y, then α is right determined by 
every object of C. If x 
= y, then α is right determined by an object c ∈ C if and only if 
there exists a unique minimal element in

Cα = {z ∈ C | z � x, z ≤ y}.
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In that case c = inf Cα. Thus in (Z, ≤) all morphisms are determined by objects, while 
in (Q, ≤) only identity morphisms are determined by some object.

Lemma 3.4. Let A, B be two additive categories with a G-action on A and F : A → B
a G-covering. Assume that α : X → Y is a morphism in A. If α is right (resp. left) 
determined by an object C in A, then F (α) is right (resp. left) determined by the object 
F (C) in B.

Proof. Let α′ : M → F (Y ) be any morphism in B. Since F is dense, we may assume 
that F (M ′) = M . Suppose that

ImB(F (C), α′) ⊆ ImB(F (C), F (α)). (3.1)

That is, for any ϕ : F (C) → F (M ′), there exists a morphism v : F (C) → F (X) such 
that F (α)v = α′ϕ.

By Lemma 2.6, we may assume that α′ = Σn
i=1F (α′

i)δg−1
i ,giM ′ , where g1, · · · , gn ∈ G

are pairwise distinct and α′
i ∈ A(giM ′, Y ). Set τ = [ α′

1 α′
2 ··· α′

n ] : ⊕n
i=1giM

′ → Y , and 
G0 = {g1, · · · , gn} ⊆ G.

Next, we claim that ImA(C, τ) ⊆ ImA(C, α).
Note that A(C, ⊕n

i=1giM
′) ∼= ⊕n

i=1A(C, giM ′). Then for any f ∈ A(C, ⊕n
i=1giM

′), we 

may write f =

⎡⎢⎣
f1
f2

...
fn

⎤⎥⎦, where fi ∈ A(C, giM ′). It suffices to find a morphism from C to 

X such that the following diagram commutes.

C
f

⊕n
i=1giM

′ τ
Y

X
α

Y.

Set φ = Σn
i=1δgi,M ′F (fi) ∈ B(F (C), F (M ′)). Then by the assumption (3.1), there exists 

a morphism v : F (C) → F (X) such that F (α)v = α′φ. By Lemma 2.6, we assume that 
v = Σh∈GF (vh)δh−1,hC , where vh : hC → X are zero morphisms for all but finitely many 
h ∈ G.

Observing that for any 1 ≤ i, j ≤ n, and any gi, gj ∈ G0,

δg−1
i ,giM ′δgj ,M ′ = δg−1

i ,giM ′δgj ,g−1
i giM ′ = δgjg−1

i ,giM ′ ,

δgjg−1
i ,giM ′F (fj) = F (gig−1

j fj)δgjg−1
i ,gig

−1
j C ,

we have that
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α′φ =
n∑

i=1

n∑
j=1

F (α′
i)δg−1

i ,giM ′δgj ,M ′F (fj)

=
n∑

i=1

n∑
j=1

F (α′
i)δgjg−1

i ,giM ′F (fj)

=
n∑

i=1

n∑
j=1

F (α′
i)F (gig−1

j fj)δgjg−1
i ,gig

−1
j C

=
n∑

i=1

n∑
j=1

F (α′
i(gig−1

j fj))δgjg−1
i ,gig

−1
j C .

Set Ωh = {(i, j) | 1 ≤ i, j ≤ n, gjg
−1
i = h} for any h ∈ G. If Ωh is an empty set for some 

h ∈ G, then we assume that 
∑

Ωh
F (α′

i(hfj))δh−1,hC = 0. Then we have

∑
h∈G

∑
Ωh

F (α′
i(hfj))δh−1,hC = α′φ = F (α)v =

∑
h∈G

F (αvh)δh−1,hC .

Since B(F (C), F (Y )) =
⊕

h∈G F (A(hC, Y ))δh−1,hC , we deduce that for any h ∈ G,

F (αvh)δh−1,hC =
∑
Ωh

F (α′
i(hfj))δh−1,hC .

In particular, we have that F (αve)δe,C =
∑

Ωe
F (α′

ifj)δe,C . Since δe,C = 1C and F is 
faithful, we have that

αve =
∑
Ωe

α′
ifj .

Note that Ωe = {(i, j) | 1 ≤ i, j ≤ n, gi = gj}. In this case, we know that i = j since 
g1, · · · , gn ∈ G are pairwise distinct. That is, αve =

∑n
i=1 α

′
ifi = τf . Hence, the claim 

holds.
Since α is right determined by the object C in A, there exists a morphism X =

[ γ1 γ2 ··· γn ] : ⊕n
i=1giM

′ → X such that αX = τ , where γi : giM ′ → X. Thus, for any 
1 ≤ i ≤ n, αγi = α′

i. Therefore, F (α) 
∑n

i=1 F (γi)δg−1
i ,giM ′ =

∑n
i=1 F (α′

i)δg−1
i ,giM ′ = α′. 

That is, α′ factors through F (α). This completes the proof. �
Lemma 3.5. Let A, B be two additive categories with a G-action on A and F : A → B
a G-covering. Assume that C ∈ A0 and α : X → Y is a morphism in A such that each 
morphism in A(gC, Y ) (resp. A(X, gC)) factors through α, for any non-identity g ∈ G. 
If F (α) is right (resp. left) determined by the object F (C) in B, then α is right (resp. 
left) determined by the object C in A.
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Proof. Let α′ : X ′ → Y be an arbitrary morphism in A. Assume that

ImA(C,α′) ⊆ ImA(C,α). (3.2)

We claim that ImB(F (C), F (α′)) ⊆ ImB(F (C), F (α)). It is enough to show that 
for any morphism f : F (C) → F (X ′), there is a morphism v : F (C) → F (X) such 
that F (α′)f = F (α)v. Since F is a G-precovering, there is a family {fg}g∈G such that 
f =

∑
g∈G F (fg)δg−1,gC where fg ∈ A(gC, X ′) for any g ∈ G. For the identity e ∈ G, 

since α′fe : C → Y , by the assumption (3.2), there exists a morphism ve : C → X such 
that αve = α′fe. For each non-identity g ∈ G, since each θ ∈ A(gC, Y ) factors through 
α, α′fg : gC → Y factors through α. That is, there exists a morphism vg : gC → X such 
that αvg = α′fg. Set v =

∑
g∈G F (vg)δg−1,gC ∈ B(F (C), F (X)). Then F (α)v = F (α′)f . 

Thus, the claim holds.
Since F (α) is right determined by the object F (C), there is a morphism u : F (X ′) →

F (X) such that F (α′) = F (α)u. By Lemma 2.6, we may write u =
∑n

i=1 F (ui)δg−1
i ,giX′

where g1, g2, · · · , gn ∈ G are pairwise distinct, and ui ∈ A(giX ′, X). Thus, we have

n∑
i=1

F (αui)δg−1
i ,giX′ = F (α)u = F (α′) = F (α′)δe,X′ .

By Lemma 2.6 (1), there exists some 1 ≤ i0 ≤ n such that gi0 = e, the identity of G. 
Since F is faithful, αui0 = α′, that is, α′ factors through α. It completes the proof. �
Proposition 3.6. Let A, B be two additive categories with a G-action on A and F : A → B
a G-covering. Assume that C ∈ A0 and α : X → Y is a morphism in A. If α is right
(resp. left) determined by the object C in A, then F (α) is right (resp. left) determined 
by the object F (C) in B. The converse holds whenever each morphism in F (A(gC, Y ))
(resp. F (A(X, gC))) factors through F (α), for any non-identity g ∈ G.

Proof. By Lemma 2.8 (1), for each θ ∈ A(gC, Y ), θ factors through α if and only if F (θ)
factors through F (α). The rest of the proof comes from Lemmas 3.4 and 3.5. �
Example 3.7. Let kQ̃ and kQ be two path algebras over a field k, where the quiver Q̃ is 
given by

x−1

γ−1

α−1
x0

γ0

α0
x1

γ1

α1

· · · y−1 β−1
y0 β0

y1 β0
· · ·

z−2 z−1 z0 z1

and Q is given by
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x
α

γ y

β

z

Then there is a natural Z-action ρ : Z → Aut(kQ̃) on kQ̃, given by ρ(n)(vi) = vi+n

and ρ(n)(fi) = fi+n for any vi ∈ {xi, yi, zi | i ∈ Z} and fi ∈ {αi, βi, γi, αiβi | i ∈ Z}. 
We define a linear functor π : kQ̃ → kQ as follows. For each vi ∈ {xi, yi, zi | i ∈ Z}
and fi ∈ {αi, βi, γi, αiβi | i ∈ Z}, π(vi) = v and π(fi) = f where v ∈ {x, y, z} and 
f ∈ {α, β, γ, αβ}. Regarding kQ and kQ̃ as k-linear categories, it is easy to see that π is a 
Z-covering. For any vi ∈ {xi, yi, zi | i ∈ Z} and non-zero n ∈ Z, kQ̃(ρ(n)(vi), vi) = 0 and 
kQ̃(vi, ρ(n)(vi)) = 0. By definition, one can check that each morphism xi → yi is right 
determined by the object yi in kQ̃, for i ∈ Z. Each morphism in π(kQ̃(ρ(n)(yi), yi)) = 0
factors through π(xi → yi) = x → y, for any non-zero n ∈ Z. Meanwhile, we can see 
that the morphism x → y is right determined by the object y in kQ.

Recall that a G-action on A is said to be directed [9] if for any indecomposable objects 
X and Y in A, A(X, gY ) = 0 or A(gX, Y ) = 0 for all but at most one g ∈ G.

Corollary 3.8. Let A, B be two additive categories with a directed G-action on A and F :
A → B a G-covering. Assume that α : X → Y is a morphism in A with Y indecomposable
(resp. X indecomposable). Then α is right (or left) determined by the object Y (resp. X) 
in A if and only if F (α) is right (resp. left) determined by the object F (Y ) (resp. F (X)) 
in B.

Proof. Since G-action on A is directed, A(gY, Y ) = 0, for any non-identity g ∈ G. Thus, 
each morphism in F (A(gY, Y )) factors through F (α), for any non-identity g ∈ G. It 
completes the proof. �

Next, we give a classical example to illustrate that there is a linear category with a 
directed G-action admitting a G-covering.

Example 3.9. Let kQ be the path algebra of the Dynkin quiver 1 → 2 → 3 over an 
algebraically closed field k. Denote by D = Db(kQ) the bounded derived category of 
the finite dimensional (left) kQ-modules, [1] the shift functor in D and τ the Auslander-
Reiten translation in D. Then g = τ−1[1] is an auto-isomorphism of D. Set G = 〈g〉. 
It is easy to see that the G-action on D is admissible and directed. The orbit category 
C = D/G is the so-called cluster category. Its objects are the G-orbits of the objects in 
D. For each X ∈ D0, we denote by X̃ = (giX)i∈Z its G-orbit. The following Fig. 1 is the 
Auslander-Reiten quiver ΓD of D, where the same color dots are in same G-orbits.
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Fig. 1. The Auslander-Reiten quiver of D. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)
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Fig. 2. The Auslander-Reiten quiver of C.

We also have the Auslander-Reiten quiver ΓC of C, see Fig. 2.
It is well-known that the projection functor π : ΓD → ΓC is a G-invariant Galois 

G-covering, which sends each X ∈ D0 to its G-orbit.

Let k be an algebraically closed field. We denote D = Homk(−, k) : modk → modk
by the standard k-duality.

Proposition 3.10. Let A, B be two Hom-finite Krull-Schmidt k-categories with a G-action 
on A and F : A → B be a G-precovering. Assume that C ∈ A0 and α : X → Y is a 
morphism in A. If the morphism α satisfies the following conditions:

(1) there is an exact sequence

B(−, F (X)) (−,F (α))−−−−−−→ B(−, F (Y )) −→ DB(F (C),−); (3.3)

(2) for any non-identity g ∈ G, A(gC, Y ) = 0,

then α is right determined by the object C in A.

Proof. For any Z ′ ∈ A0, we have F (Z ′) ∈ B0. From the exact sequence (3.3), we obtain 
the following exact sequence

B(F (Z ′), F (X)) (F (Z′),F (α))−−−−−−−−→ B(F (Z ′), F (Y )) −→ DB(F (C), F (Z ′)).

Note that ⊕g∈GA(gC, Z ′) ∼= B(F (C), F (Z ′)) by Definition 2.4. Since A and B are Hom-
finite, we have the isomorphism

φC,Z′ : ⊕g∈GD(A(gC,Z ′)) ∼−→ DB(F (C), F (Z ′)).

By Definition 2.4 and Lemma 2.6, we have the following commutative diagram.
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⊕g∈GA(Z ′, gX)

∼=FZ′,X

⊕g∈G(Z′,gα)
⊕g∈GA(Z ′, gY )

∼=FZ′,Y

⊕g∈GDA(gC,Z ′)

∼=φC,Z′

B(F (Z ′), F (X))
(F (Z′),F (α))

B(F (Z ′), F (Y )) DB(F (C), F (Z ′)).

Then the first row is exact. Hence, we have the following exact sequence

⊕g∈GA(−, gX) ⊕g∈G(−,gα)−−−−−−−−→ ⊕g∈GA(−, gY ) −→ ⊕g∈GDA(gC,−).

It implies that Coker ⊕g∈G (−, gα) ∼= ⊕g∈GCoker(−, gα) can be embedded into 
⊕g∈GDA(gC, −). Thus, Coker(−, α) can be embedded into ⊕g∈GDA(gC, −). Let η :
Coker(−, α) → ⊕g∈GDA(gC, −) be the inclusion. Then one can write η as a column 
matrix [ηg]g∈G, where ηg : Coker(−, α) → DA(gC, −). For any non-identity h ∈ G, 
applying the functor Fun(−, DA(hC, −)) to the following exact sequence

A(−, X) (−,α)−−−→ A(−, Y ) −→ Coker(−, α) −→ 0,

we have an exact sequence

0 −→ Fun(Coker(−, α), DA(hC,−)) −→ Fun(A(−, Y ), DA(hC,−)).

By Yoneda Lemma, we know that Fun(A(−, Y ), DA(hC, −)) ∼= DA(hC, Y ) = 0, by 
the assumption (2). Then we obtain that Fun(Coker(−, α), DA(hC, −)) = 0 and so 
ηh : Coker(−, α) → DA(hC, −) is zero. Hence, ηe : Coker(−, α) → DA(C, −) is injective. 
Therefore, we have the following exact sequence

A(−, X) (−,α)−−−→ A(−, Y ) −→ DA(C,−).

Form [24, Proposition 3.7], we have that α is right determined by C. �
Corollary 3.11. Let A, B be two Hom-finite Krull-Schmidt k-categories with a directed 
G-action on A and F : A → B a G-precovering. Assume that α : X → Y is a morphism 
in A with Y indecomposable. If there is an exact sequence

B(−, F (X)) (−,F (α))−−−−−−→ B(−, F (Y )) −→ DB(F (Y m),−),

where m is an integer, then α is right determined by the object Y in A.

Proof. Since the G-action on A is directed and Y is indecomposable, we have 
A(gY m, Y ) ∼= A(gY, Y )m = 0 for any non-identity g ∈ G. By Proposition 3.10, we 
have that α is right determined by the object Y m in A.

Next, we claim that α is right determined by the object Y .
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In fact, for any α′ : X ′ → Y , we assume that ImA(Y, α′) ⊆ ImA(Y, α). Then we have 
ImA(Y m, α′) ⊆ ImA(Y m, α). Since α is right determined by the object Ym in A, we 
know that α′ factors through α. Thus, α is right determined by the object Y . �
Proposition 3.12. Let A, B be two Hom-finite Krull-Schmidt k-categories with G a group 
acting freely and directly on A, and F : A → B a G-covering. Assume that α : X → Y

is a morphism in A with Y indecomposable. If the following conditions hold:

(1) F (α) is right determined by F (Y );
(2) the action of G on indA has only finitely many G-orbits,

then α is right determined by Y in A.

Proof. Note that F is a G-covering functor between categories A and B. Then, it 
induces the G-covering functor between their indecomposable objects, denoted by 
F̃ : indA → indB. Since the G-action is free, by [1, Theorem 2.9], there is an equiv-
alence indB ∼= (indA)/G, where (indA)/G is the orbit category of A. Since the action 
of G on indA has only finitely many G-orbits, we know that indB has finitely many 
objects. Let {X1, X2, · · · , Xn} be all pairwise nonisomorphic objects in indB. Since B is 
a Krull-Schmidt category, we know that B = addM , where M = ⊕n

i=1Xi. Thus, modBop

is equivalent to the category of finitely generated modules over the finite dimensional 
k-algebra EndB(M). Thus, B is a dualising k-variety.

Consider the exact sequence

B(−, F (X)) (−,F (α))−−−−−−→ B(−, F (Y )) −→ Coker(−, F (α)) −→ 0.

Assume that Coker(−, F (α)) 
= 0. Let E(Coker(−, F (α))) be the injective envelope 
of Coker(−, F (α)). Then, E(Coker(−, F (α))) ∼= DB(Z, −), where Z is an object in B. 
Hence, we have the following exact sequence

B(−, F (X)) (−,F (α))−−−−−−→ B(−, F (Y )) −→ DB(Z,−).

By [24, Proposition 3.7], F (α) is right determined by Z. By the assumption (1) and [24, 
Proposition 3.13], addZ ⊆ addF (Y ). Then there is an object Z ′ such that Z ⊕ Z ′ =
F (Y m) for some integer m.

Then, we have the following exact sequence

B(−, F (X)) (−,F (α))−−−−−−→ B(−, F (Y )) −→ DB(F (Y m),−). (3.4)

By Corollary 3.11, α is right determined by the object Y .
If Coker(−, F (α)) = 0, one can get the exact sequence (3.4) directly. By similar 

argument, we obtain the results. �
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Let A be a finite dimensional k-algebra. In the classical theory of morphisms de-
termined by objects, given a morphism f : X → Y which is right determined by C
in modA, the right EndA(C)-submodule ImHomA(C, f) of HomA(C, Y ) plays a crucial 
role. Auslander [5] made a great effort to give a positive answer to the question that 
for any modules C, Y and any right EndA(C)-submodule H of HomA(C, Y ), is there 
a morphism f : X → Y determined by C such that ImHomA(C, f) = H? Krause [24]
provided a similar result for triangulated categories.

Now, we end this section by giving the following result.

Proposition 3.13. Let A, B be two Hom-finite Krull-Schmidt categories with G a group 
acting freely on A and F : A → B a G-covering. Assume that Y , C are two objects in 
A such that A(gC, Y ) = 0 for each non-identity g ∈ G. If the action of G on indA has 
only finitely many G-orbits, then for any right EndA(C)-submodule H ⊆ A(C, Y ), there 
is a morphism α : X → Y such that ImA(C, α) = H.

Proof. Since F is a G-precovering, F is faithful. Then for objects Y, C in A, F induces the 
monomorphism Fe = FC,Y ◦ ince : A(C, Y ) → B(F (C), F (Y )) given by Fe(u) = F (u)
for any u : C → Y , where ince : A(C, Y ) → ⊕g∈GA(C, gY ) is the canonical em-
bedding and FC,Y : ⊕g∈GA(C, gY ) → B(F (C), F (Y )) is the isomorphism defined in 
Definition 2.4. For any right EndA(C)-submodule H ⊆ A(C, Y ), there is a monomor-
phism Fe ◦ ι : H → B(F (C), F (Y )), where ι : H → A(C, Y ) is the inclusion. Note that 
the composition map A(C, Y ) × A(gC, C) → A(gC, Y ) is zero for every non-identity 
g since A(gC, Y ) = 0 for any every non-identity g ∈ G. Hence, H can be viewed as 
a right EndB(F (C))-submodule H of B(F (C), F (Y )). Note that modEndB(F (C))op is 
an abelian category with enough projective and injective modules. Then there is an in-
jective embedding B(F (C), F (Y ))/H ↪→ (DEndB(F (C)))m in modEndB(F (C))op. Let 
ΓC = EndB(F (C))op. By [24, 3.2], there is a morphism in the category modBop consisting 
of coherent functors

η : B(−, F (Y )) −→ HomΓC
(B(F (C),−), DEndB(F (C)))m.

By [24, Lemma 3.5], we know that

HomΓC
(B(F (C),−), DEndB(F (C))) ∼= DB(F (C),−).

Thus, we can write η : B(−, F (Y )) → DB(F (Cm), −) since F is additive. In particular, 
ker ηF (C) = H.

Note that the action of G on indA has only finitely many G-orbits. Then, by 
Proposition 3.12, modBop is an abelian category with enough projective objects. Thus, 
ker η ∈ modBop. Take a projective cover B(−, X ′) → ker η for some X ′ ∈ B0. Since F is 
dense, we assume that X ′ = F (X) for some X ∈ A0. Then there is an exact sequence

B(−, F (X)) −→ B(−, F (Y )) η−→ DB(F (Cm),−).
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By Definition 2.4, we have the following commutative diagram

⊕g∈GA(−, gX) Θ

F−,X

⊕h∈GA(−, hY )

F−,Y

DB(F (Cm),−)

B(−, F (X)) B(−, F (Y )) DB(F (Cm),−).

We may write Θ = [θ̂h,g]h×g∈G×G. By Yoneda Lemma, for any g, h ∈ G, there is a 

morphism θh,g : gX → hY such that θ̂h,g = A(−, θh,g) : A(−, gX) → A(−, hY ). In 
particular, we have the following commutative diagram.

H

ι

A(C, Y )

ince

⊕g∈GA(C, gX)

λ◦FC,X

FC,X

ΘC ⊕h∈GA(C, hY )

FC,Y

DB(F (Cm), F (C))

B(F (C), F (X))
λ

B(F (C), F (Y ))
ηF (C)

DB(F (Cm), F (C)).

ker ηF (C)

Fe◦ι

From the commutative diagram, we have ImΘC = H ⊆ A(C, Y ). It implies that 
ImΘC = Im[θ̂e,gC ]g∈G. Since A, B are Hom-finite, there exists a finite subset G0 of 
G such that ⊕g∈GA(C, gX) = ⊕g∈G0A(C, gX) and A(C, g′X) = 0 for g′ ∈ G\G0. 
Thus, ImΘC = Im[θ̂e,gC ]g∈G = Im[θ̂e,gC ]g∈G0 . Note that [θ̂e,gC ]g∈G0 = A(C, ⊕g∈G0θ

e,g
C ). Set 

α = ⊕g∈G0θ
e,g
C : ⊕g∈G0gX → Y . Then we have that ImA(C, α) = H. This completes 

the proof. �
Remark 3.14. Unfortunately, we could not be sure whether or not the defined morphism 
α is determined by some object.

4. Applying into Auslander-Reiten theory

Let T be a Hom-finite Krull-Schmidt triangulated category over an algebraically closed 
field k. Recall from [28] that a right Serre functor on T is an additive functor S : T → T
together with a natural isomorphism DT (X, −) ∼= T (−, SX) for any object X in T , 
where D is the standard k-duality. A right Serre functor is said to be Serre if it is an 
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equivalence. In this section, our aim is to show that for a G-covering functor F : A →
B between two Hom-finite Krull-Schmidt triangulated categories, B has Serre functor 
whenever A has Serre functor.

Recall from [20, 4.5] that T has sink morphisms (resp. has source morphisms) if, for 
any indecomposable object in T , there exists a sink morphism (resp. a source morphism) 
in T . From [28, Theorem I.2.4] and [20], we know that T has Serre functor if and only 
if T has sink morphisms and source morphisms.

Therefore, the problem turns into showing whether the functor F preserves sink mor-
phisms and source morphisms. In fact, it should be attributed to Bautista and Liu’s work 
in [9]. However, in this section, we will apply the theory of morphisms determined by 
objects obtained in Section 3 to show that a G-covering functor preserves sink morphisms 
and source morphisms, which provides a quite different method from [9].

Let A be an additive category. Recall that a morphism f : X → Y in A is said to be 
a right almost split morphism if it satisfies the following conditions:

(1) f is not a retraction;
(2) every morphism f ′ : X ′ → Y , which is not a retraction, factors through f .

Moreover, if f is both right almost split and right minimal (i.e. each h ∈ EndA(Y )
satisfying fh = f is an automorphism), then we call it a sink morphism. Dually, one can 
define the notions of left almost split, left minimal and source morphisms.

Proposition 4.1 ([5, Sect. II.2]). A morphism f : X → Y in an additive category A is 
right almost split if and only if f satisfies the following conditions:

(1) EndA(Y ) is a local ring;
(2) f is right determined by the object Y in A;
(3) ImA(Y, f) = radA(Y, Y ).

Proposition 4.2 ([26, Corollary 1.4]). Let φ : M → N be a morphism in an additive 
category A and suppose that idempotents in EndA(M) split. If M is a finite direct sum of 
indecomposable objects with local endomorphism rings, then there exists a decomposition

φ = [ φ′ φ′′ ] : M = M ′ ⊕M ′′ −→ N

such that φ′ is right minimal and φ′′ = 0.

Lemma 4.3. Let A, B be two Krull-Schmidt categories with G a group acting freely on A
and F : A → B a G-covering. Assume that u : X → Y is a morphism in A. If F (u) is 
right (resp. left) almost split in B, then u is right (resp. left) almost split in A.

Proof. Assume that F (u) is right almost split in B. Because F is a G-precovering, there 
is a monomorphism Fe : EndA(Y ) → EndB(F (Y )) given by Fe(f) = F (f) for any 
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f ∈ EndA(Y ). Since EndB(F (Y )) is a local ring and A is a Krull-Schmidt category, 
we have that EndA(Y ) is local from the monomorphism Fe. If g is a non-identity ele-
ment of G, then gY � Y since the G-action is free. Thus, for any w ∈ HomA(gY, Y ), 
w ∈ radA(gY, Y ), since EndA(gY ) is local, we have that w is a non-retraction by [32, 
Proposition 3.11]. By Lemma 2.8 (2), F (w) is a non-retraction. Since F (u) is right al-
most split, F (w) factors through F (u). That is, each morphism in F (A(gY, Y )) factors 
through F (u). By Proposition 3.6, u is right determined by the object Y in A.

Since F (u) is a non-retraction, by Lemma 2.8 (2), u is a non-retraction. By [32, Propo-
sition 3.11], ImA(Y, u) ⊆ radA(Y, Y ). For any p ∈ radA(Y, Y ), p is a non-isomorphism, 
and so is F (p). Then F (p) ∈ radB(F (Y ), F (Y )) since EndB(F (Y )) is a local ring. Since 
ImB(F (Y ), F (u)) = radB(F (Y ), F (Y )), there exists a morphism p′ : F (Y ) → F (X)
such that F (p) = F (u)p′. By Lemma 2.6 (1), we may assume that p′ =

∑n
i=1 F (p′i)δ

−1
gi,Y

, 
where g1, g2, · · · , gn ∈ G are pairwise distinct and p′i ∈ A(giY, X). Then, we have

F (p) =
n∑

i=1
F (up′i)δ−1

gi,Y
.

Thus, there exists some 1 ≤ i0 ≤ n such that gi0 = e, the identity element of G, and 
F (p) = F (up′i0). Since F is faithful, p = up′i0 . That is, p factors through u and so 
radA(Y, Y ) ⊆ ImA(Y, u). Hence, radA(Y, Y ) = ImA(Y, u). It completes the proof. �
Lemma 4.4. Let A, B be two Krull-Schmidt categories with G a group acting freely on A
and F : A → B a normal G-covering. Assume that u : X → Y is a morphism in A. If u
is right (resp. left) almost split in A, then F (u) is right (resp. left) almost split in B.

Proof. Assume that u is right almost split. Then u is right determined by the object Y
in A and so F (u) is right determined by the object F (Y ) in B by Proposition 3.6. Since 
F is a normal G-covering and EndA(Y ) is local, we know that EndA(F (Y )) is local.

Next, we shall prove that ImB(F (Y ), F (u)) = radB(F (Y ), F (Y )).
First of all, we check that ImB(F (Y ), F (u)) ⊆ radB(F (Y ), F (Y )). For any morphism 

f : F (Y ) → F (X), we may write f =
∑

g∈G F (fg)δ−1
g,Y , where fg ∈ A(gY, X) for any 

g ∈ G. Then F (u)f =
∑

g∈G F (ufg)δ−1
g,Y ∈ EndB(F (Y )) and ufg ∈ A(gY, Y ) for any 

g ∈ G. For any non-identity g ∈ G, since the G-action on A is free, gY � Y . Then, we 
know that ufg ∈ radA(gY, Y ) since EndA(Y ) is local. That is, ufg is non-invertible and 
so is F (ufg) by Lemma 2.8 (2). Thus, F (ufg) ∈ radB(F (gY ), F (Y )) since EndB(F (Y ))
and EndB(F (gY )) are local. Then F (ufg)δ−1

g,Y ∈ radB(F (Y ), F (Y )). For the identity 
e ∈ G, ufe ∈ ImA(Y, u). Since u is right almost split, ImA(Y, u) = radA(Y, Y ). Then 
ufe ∈ radA(Y, Y ), and thus ufe is non-invertible since EndA(Y ) is local. It follows that 
F (ufe) is non-invertible by Lemma 2.8 (2). Then F (ufe) ∈ radB(F (Y ), F (Y )) since 
EndA(F (Y )) is local. Hence, F (u)f ∈ radB(F (Y ), F (Y )).

Secondly, we prove that radB(F (Y ), F (Y )) ⊆ ImB(F (Y ), F (u)).
For any f ∈ radB(F (Y ), F (Y )), we may write that f =

∑
g∈G F (fg)δ−1

g,Y , where 
fg ∈ A(gY, Y ) for any g ∈ G. For any non-identity g ∈ G, since the G-action on A is 
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free, we have gY � Y . Then fg ∈ radA(gY, Y ) by the fact that EndA(gY ) and EndA(Y )
are local. Thus, fg is not a retraction. Note that u is right almost split. This gives rise 
to fg = uhg for some morphism hg : gY → X. For the identity e ∈ G, we claim that 
fe is non-invertible. Indeed, suppose that fe is invertible, and so is F (fe) by Lemma 2.8
(2). Then

f = F (fe) +
∑
g∈G
g �=e

F (fg)δ−1
g,Y .

Note that fg ∈ radA(gY, Y ) for any non-identity g ∈ G. Thus, fg is non-invertible, 
and so is F (fg) by Lemma 2.8 (2). Since EndB(F (gY )) and EndB(F (Y )) are local, 
F (fg) ∈ radB(F (gY ), F (Y )) and so 

∑
g∈G
g �=e

F (fg)δ−1
g,Y ∈ radB(F (Y ), F (Y )). It implies 

that F (fe) = (f−
∑

g∈G
g �=e

F (fg)δ−1
g,Y ) ∈ radB(F (Y ), F (Y )), which is impossible. Therefore, 

fe is non-invertible. As a consequence, fe ∈ radA(Y, Y ) since EndA(Y ) is local. By the 
assumption, we know that ImA(Y, u) = radA(Y, Y ). Thus, there exists a morphism 
he : Y → X such that fe = uhe.

Set h =
∑

g∈G F (hg)δ−1
g,Y : F (Y ) → F (X). Then f = F (u)h ∈ ImB(F (Y ), F (u)). It 

completes the proof. �
Lemma 4.5. Let A, B be two Krull-Schmidt categories with G a group acting freely on 
A and F : A → B a normal G-covering. Assume that u : X → Y is a morphism in A. 
Then u is right (resp. left) minimal if and only if F (u) is right (resp. left) minimal.

Proof. For the sufficiency, we assume that F (u) is right minimal with EndB(F (Y )) a 
local ring. For any h : X → X with u = uh, we have that F (u) = F (u)F (h). Since F (u)
is right minimal, we have that F (h) ∈ Aut(F (X)). By Lemma 2.8 (2), h ∈ Aut(X). 
Hence, u is right minimal.

Assume that u is right minimal. Since B is Krull-Schmidt, by Proposition 4.2, there 
exists a decomposition

F (u) = [ a b ] : F (X) = M ′ ⊕M ′′ −→ F (Y )

such that a is right minimal and b = 0. Since B is a Krull-Schmidt category and F is 
dense, we may assume that M ′ = F (X ′

1) ⊕ F (X ′
2) ⊕ · · · ⊕ F (X ′

n) and M ′′ = F (X ′′
1 ) ⊕

F (X ′′
2 ) ⊕ · · · ⊕ F (X ′′

m), where all X ′
i and X ′′

j are indecomposable in A such that F (X ′
i)

and F (X ′′
j ) are indecomposable in B for 1 ≤ i ≤ n and 1 ≤ j ≤ m. By Definition 2.9 (2), 

we may assume that

X = g1X
′
1 ⊕ g2X

′
2 ⊕ · · · ⊕ gnX

′
n ⊕ h1X

′′
1 ⊕ h2X

′′
2 ⊕ · · · ⊕ hmX ′′

m,

with all gi, hj ∈ G. In this case, we may write
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u = [ a′ b′ ] : (g1X
′
1 ⊕ g2X

′
2 ⊕ · · · ⊕ gnX

′
n) ⊕ (h1X

′′
1 ⊕ h2X

′′
2 ⊕ · · · ⊕ hmX ′′

m) −→ Y,

where a′ : g1X
′
1 ⊕ g2X

′
2 ⊕ · · · ⊕ gnX

′
n −→ Y and b′ : h1X

′′
1 ⊕ h2X

′′
2 ⊕ · · · ⊕ hmX ′′

m −→ Y . 
Note that δgi : Fgi → F and δhj

: Fhj → F are functorial isomorphisms, for any 
1 ≤ i ≤ n and 1 ≤ j ≤ m. Set

σ = diag{δg1,X′
1
, δg2,X′

2
, · · · , δgn,X′

n
}n×n

τ = diag{δh1,X′′
1
, δh2,X′′

2
, · · · , δhm,X′′

m
}m×m.

Then F (u) = [ F (a′) F (b′) ] = [ a b ]
[
σ 0
0 τ

]
. Hence, F (a′) = aσ and F (b′) = bτ = 0. 

By Lemma 2.6, F is faithful, and thus b′ = 0. Note that u is right minimal. Then 
so does b′. It implies that the zero morphism from h1X

′′
1 ⊕ h2X

′′
2 ⊕ · · · ⊕ hmX ′′

m to 
h1X

′′
1 ⊕h2X

′′
2 ⊕· · ·⊕hmX ′′

m is an automorphism. Thus, h1X
′′
1 ⊕h2X

′′
2 ⊕· · ·⊕hmX ′′

m is a 
zero object in A. This yields that all X ′′

j are zero objects in A for 1 ≤ j ≤ m. Therefore, 
M ′′ is a zero object in B. Thus, F (u) = a is right minimal. �
Theorem 4.6. Let A, B be two Krull-Schmidt categories with G a group acting freely on 
A and F : A → B a normal G-covering. Assume that u : X → Y is a morphism in A. 
Then u is a sink (resp. source) morphism if and only if F (u) is a sink (resp. source) 
morphism.

Proof. It follows from Lemmas 4.3, 4.4 and 4.5. �
Remark 4.7. This result recovers [9, Proposition 3.5], in which the assumption that the 
G-action on A is locally bounded, is needed.

Corollary 4.8. Let k be an algebraically closed field. Let A, B be two Hom-finite Krull-
Schmidt triangulated k-linear categories with G a group acting freely on A and F : A → B
a normal G-covering. If A has Serre functor, then B has Serre functor.

Proof. From [28, Theorem I.2.4] and [20], it suffices to show that for any indecomposable 
object Z ∈ B, Z has sink and source morphisms. Since F is a normal G-covering, there is 
an indecomposable object Z ′ ∈ A such that F (Z ′) ∼= Z. Note that A has Serre functor. 
Then, there are a source morphism u : Z ′ → Y and a sink morphism v : X → Z ′ in A. 
By Theorem 4.6, F (u) is a source morphism and F (v) is a sink morphism. It completes 
the proof. �
5. Galois G-covering of the stable categories

Let C be an additive category. We recall that C has direct sums provided that any 
set-indexed family of objects in C has direct sum. Let {Xi}i∈I be a family of objects in 
C, where I is an index set. If C has direct sums, then the direct sum of {Xi}i∈I exists 



246 Y. Hu, T. Zhao / Journal of Algebra 620 (2023) 225–256
with the canonical injection qj : Xj → ⊕i∈IXi for each j ∈ I. By definition of the 
direct sum, there is a unique morphism pj : ⊕i∈IXi → Xj , for each j ∈ I, called the 
pseudo-projection, such that

piqj =
{

idXi
, i = j

0, i 
= j
(5.1)

for all i, j ∈ I.
In what follows, unless specifically stated, we assume that k is an algebraically closed 

field and A is a locally bounded k-linear category. We say that a left A-module M is 
finite dimensional if 

∑
x∈A0

dimkM(x) is finite. We denote by modA the full additive 
subcategory of ModA consisting of all finite dimensional left A-modules. It is well-known 
that both ModA and modA are abelian categories. Moreover, modA is a Hom-finite Krull-
Schmidt category. Since A is locally bounded, each projective left A-module P [x] is finite 
dimensional and each left A-module M in modA has a projective cover P → M , where 
P is a finite dimensional projective left A-module. It means that each module in modA
is finitely presented.

Let M be an A-module in ModA. We denote by

suppM = {x ∈ A0|M(x) 
= 0},

the support of M . Let x be an object of A. Let Ax denote the full subcategory of A
formed by the objects of all suppM , where M is indecomposable and M(x) 
= 0. A locally 
bounded k-linear category A is called locally support finite if for every x ∈ A0, Ax is 
finite.

The full subcategory of ModA consisting of projective objects is denoted by PrjA. Note 
that an A-module P is projective if and only if P is isomorphic to a direct summand of 
a direct sum of representable functors P [x], where x ∈ A0. The full subcategory of PrjA
consisting of finitely generated projective A-modules is denoted by prjA.

Let M be a finitely generated module in ModA. By [4, Proposition 2.1(c)], for any 
morphism f : M → ⊕i∈INi, there is a finite subset J of I such that there is a commu-
tative diagram

M

f

f ′

⊕j∈JNj

η

⊕i∈INi,

where η = (qj)j∈J with qj : Nj → ⊕i∈INi the canonical injection, for any j ∈ J . 
Moreover, there is a natural isomorphism HomA(M, ⊕i∈INi) ∼= ⊕i∈IHomA(M, Ni) for 
any finitely generated module M .
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Let G be a group. The G-action on A induces a G-action on ModA. Fix g ∈ G. 
Regarding g as an automorphism of A, for each left A-module M , one can define g ·
M = M ◦ g−1 : A → Modk and for any morphism f ∈ HomA(M, N), one can define 
g · f : g · M → g · N given by g · f(x) = f(g−1x) for any x ∈ A0. In particular, 
g · P [x] = P [gx], for any x ∈ A0 and g ∈ G.

By Bongartz and Gabriel’s classical construction in [11], each G-invariant Galois G-
covering π : A → B induces an adjoint triple (π•, π•, π�) between ModA and ModB. We 
will describe (π•, π•) explicitly.

Now, we assume that the G-action is free. Let π : A → B be a G-invariant Galois 
G-covering. Now we recall from [11] the push-down functor π• : ModA → ModB. For 
any M ∈ ModA, the left B-module π•(M) is defined as follows. For any b ∈ B0,

π•(M)(b) := ⊕a∈π−1(b)M(a),

where π−1(b) = {a ∈ A0|π(a) = b}. Let α : x → y be a morphism in B. Since π : A → B
is a G-invariant Galois G-covering, for any a ∈ π−1(x), there is an isomorphism

⊕b∈π−1(y)A(a, b) ∼= B(x, y)

induced by π. For each pair (a, b) ∈ π−1(x) × π−1(y), there is a unique family {αb,a :
a → b}b∈π−1(y) such that 

∑
b∈π−1(y) π(αb,a) = α. Then one defines

π•(M)(α) := (M(αb,a))(b,a)∈π−1(y)×π−1(x) : ⊕a∈π−1(x)M(a) → ⊕b∈π−1(y)M(b).

For any morphism f : M → N in ModA, one defines π•(f) : π•(M) → π•(N) as 
follows:

π•(f)(b) := diag{f(x)|x ∈ π−1(b)} : ⊕x∈π−1(b)M(x) → ⊕x∈π−1(b)N(x).

Following [11,17] and [9, Lemma 6.3], the push-down functor π• : ModA → ModB
is exact and admits a G-stabilizer δ. For any g ∈ G and M ∈ ModA, the functorial 
isomorphism δg,M : π•(g ·M) → π•(M) is defined as follows: for any b ∈ B0, one defines

δg,M (b) := (εy,x)(y,x)∈π−1(b)×π−1(b) : ⊕x∈π−1(b)M(g−1x) → ⊕y∈π−1(b)M(y),

where εy,x : M(g−1x) → M(y) is a k-linear map such that

εy,x =
{

idy, g−1x = y;
0, otherwise.

Moreover, π•(P [x]) = P [π(x)] for any x ∈ A0.
We also recall the pull-up functor, denoted by

π• : ModB → ModA,
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which is an exact functor, as well as a right adjoint functor of π•. For any N ∈ ModB, 
π•(N) = N ◦ π. For any f : M → N in ModB and x ∈ A0, π•(f)(x) = f(π(x)). By the 
definition of π• and the fact that π : A → B is a G-invariant Galois G-covering, we have 
that π•(P [b]) = B(b, π(−)) ∼= ⊕x∈π−1(b)P [x] for any b ∈ B0. Moreover, π•(PrjB) ⊆ PrjA. 
Since the G-action on A is free, Remark 6.3 together with Theorem 6.2 of [1] imply that 
π• is fully faithful.

Next, we recall the construction of adjoint isomorphisms φ and ψ of (π•, π•), where 
for any M ∈ ModA and N ∈ ModB, both

φM,N :HomA(M,π•(N)) → HomB(π•(M), N) (5.2)

ψM,N :HomB(π•(M), N) → HomA(M,π•(N)) (5.3)

are isomorphisms and natural in two variables M , N . For any u : M → π•(N) and 
b ∈ B0, φM,N (u)(b) := (u(x))x∈π−1(b) : ⊕x∈π−1(b)M(x) → N(b) and φM,N (u) :=
(φM,N (u)(b))b∈B0 .

It is easy to check that for any morphisms u ∈ HomA(M, π•(N)) and v ∈
HomB(π•(M), N),

φM,N (u) = λN ◦ π•(u),

ψM,N (v) = π•(v) ◦ μM ,

where λN = φπ•(N),N (idπ•(N)) : π•π•(N) → N and μM = ψM,π•(M)(idπ•(M)) : M →
π•π•(M) are the counit and the unit of (π•, π•), respectively.

Let C be an additive k-linear category. Recall that I is said to be an ideal on C if 
I(x, y) is a k-submodule of C(x, y) and for any f ∈ I(x, y), g ∈ C(z, x) and h ∈ C(y, s), 
fg ∈ I(z, y) and hf ∈ I(x, s). Then the quotient category of C, denoted by C/I, has 
the same objects as C, and for any two objects x, y ∈ C0, C(x, y) := C(x, y)/I(x, y) is 
the quotient module of C(x, y). Let QC : C → C/I be the quotient functor. One has the 
following universal property: for any k-linear category C′ and k-linear functor F : C → C′

which satisfies F (X) ∼= 0 for X ∈ I, there exists a unique k-linear functor F : C/I → C′

such that F = F ◦ QC .

Example 5.1. Let C be an additive k-linear category. Assume that I is a full subcategory 
of C which is closed under taking finite direct sums and direct summands (i.e., for any 
two objects x, y ∈ C0, x ⊕ y ∈ I if and only if x, y ∈ I) and I(x, y) is a k-submodule of 
C(x, y) consisting of morphisms factoring through some object in I. Then, in this case, 
I is an ideal on C, see [16, Lemma 4.3].

Let A and B be locally bounded categories with G a group acting freely on A and 
π : A → B a G-invariant Galois G-covering. Let CA and CB be full subcategories of 
modA and modB, respectively, which are both closed under taking finite direct sums and 
direct summands. Let DA and DB be the additive full subcategories of ModA and ModB, 
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respectively, such that DA
⋂

modA = CA and DB
⋂

modB = CB and both of them are 
closed under any direct sums and direct summands. If prjA ⊆ CA and prjB ⊆ CB, then 
PrjA ⊆ DA and PrjB ⊆ DB since PrjA = Add(prjA) and PrjB = Add(prjB). In this case, 
from Example 5.1, we see that PrjA and prjA are ideals on DA and CA, respectively. We 
define the stable categories of DA and CA, denoted by DA and CA the quotient categories 
DA/PrjA and CA/prjA, respectively. It is easy to see that CA is a full subcategory of DA. 
By abuse of notation, the quotient functors CA → CA and DA → DA are both denoted 
by QA.

Let K be a k-linear category with a G-action. Recall that C is said to be a G-subcategory
of K if C is a full subcategory of K and g · CA ⊆ CA for any g ∈ A. For example, PrjA
and prjA are G-subcategories of ModA and modA, respectively.

Moreover, if DA is a G-subcategory of ModA, then so is CA in modA since 
DA

⋂
modA = CA. Then, in this case, the G-actions on modA and ModA restrict to 

CA and DA.

Notation 1. Let A and B be locally bounded categories with a group G acting freely on 
A and π : A → B a G-invariant Galois G-covering. We fix the following notations:

(1) Denote by CA and CB the full subcategories of modA and modB containing prjA and 
prjB, and closed under taking finite direct sums and direct summands, respectively.

(2) Denote by DA and DB the additive full subcategories of ModA and ModB, respec-
tively, such that DA

⋂
modA = CA and DB

⋂
modB = CB and both of them are 

closed under any direct sums and direct summands.

Consequently, we have the following two lemmas. Their proofs are trivial and omit-
ted.

Lemma 5.2. Keep the notations in Notation 1. Assume that DA is a G-subcategory of 
ModA. Regard g ∈ G as an automorphism of DA and CA. Then g is also an automor-
phism of DA and CA with the following commutative diagram

CA
QA

g

CA

g

CA
QA CA

DA
QA

g

DA

g

DA
QA DA.

In this case, both C′
A and CA have G-actions.

Lemma 5.3. Keep the notations in Notation 1. If π• sends DA to DB and π• sends DB
to DA, then π• and π• induce the functors π• : DA → DB and π• : DB → DA with the 
following commutative diagrams
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DA
QA

π•

DA

π•

DB
QB DB

DB
QB

π•

DB

π•

DA
QA DA.

Moreover, π• can be restricted to C, which, by abuse of notation, is denoted by π• again.

Proof. It suffices to show that π• can be restricted to C. Indeed, since DA
⋂

modA = CA, 
DB

⋂
modB = CB and π• preserves finitely generated modules, we have that π• can be 

restricted to C. Thus, π• can be restricted to C. �
Proposition 5.4. Keep the notations in Notation 1. Assume that DA is a G-subcategory 
of ModA. If π• sends DA to DB and π• sends DB to DA, then the following hold.

(1) (π•, π•) is an adjoint pair between DA and DB.
(2) For any X, Y ∈ CA, there is a natural isomorphism

⊕g∈GCA(X, gY ) ∼= DA(X,⊕g∈GgY ).

Proof. (1) Fix M ∈ DA and N ∈ DB. Then we have the adjoint isomorphisms 
φM,N and ψM,N defined as (5.2) and (5.3). Since DA and DB are full subcategories 
of ModA and ModB, we have that φM,N : DA(M, π•(N)) → DB(π•(M), N) and ψM,N :
DB(π•(M), N) → DA(M, π•(N)) are isomorphisms. For any f ∈ PrjA(M, π•(N)), 
there is a projective A-module P such that f factors through P . Since φM,N (f) =
λN ◦ π•(f), where λN is a counit. Note that π• preserves projective objects. Thus, 
φM,N (f) = λN ◦ π•(f) ∈ PrjB(π•(M), N). Similarly, since π• preserves projective ob-
jects, ψM,N (g) = π•(g) ◦ μM ∈ PrjA(M, π•(N)) for any g ∈ PrjB(π•(M), N), where 
μM = ψM,π•(M)(idπ•(M)) is a unit. Then the restriction of φM,N on PrjA(M, π•(N)) is 
an isomorphism. Therefore, there is a natural isomorphism

DA(M,π•(N)) ∼= DB(π•(M), N),

where the naturality comes from that of φM,N .
(2) Given X, Y ∈ CA, we see that X, Y are finitely generated A-modules. For any 

(ug)g∈G ∈ ⊕g∈GHomA(X, gY ), there is a finite subset G0 of G such that uh = 0 for 
any h ∈ G\G0. Then we have the morphism f = ηG0 ◦ f ′ ∈ HomA(X, ⊕g∈GgY ), where 
f ′ = (uh)h∈G : X → ⊕h∈G0hY is a column-matrix, ηG0 = (qh)h∈G0 is a matrix with 
qh : Nh → ⊕g∈GgY the canonical injection, for h ∈ G0. From [4, Proposition 2.1(c)], we 
have the natural isomorphism

θX,Y : ⊕g∈GHomA(X, gY ) → HomA(X,⊕g∈GgY ),
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which sends (ug)g∈G to f = ηG0 ◦ f ′ by the discussion above. Since DA and CA are full 
G-subcategories of ModA and DA is closed under any direct sums, we have the natural 
isomorphism

θX,Y : ⊕g∈GCA(X, gY ) → DA(X,⊕g∈GgY ).

Next, we show that the restriction of θX,Y on ⊕g∈GprjA(X, gY ), denoted by θX,Y |, 
is an isomorphism. For any (ug)g∈G ∈ ⊕g∈GprjA(X, gY ) with each ug ∈ prjA(X, gY ), 
there is a finite subset G0 of G such that uh = 0 for any h ∈ G\G0. For each h ∈ G0, 
since uh ∈ prjA(X, hY ), there are two morphisms sh : X → Ph and th : Ph → hY such 
that uh = th ◦ sh, where Ph ∈ prjA. Then f ′ = (uh)h∈G0 = diag{th|h ∈ G0} ◦ (sh)h∈G0

and so θX,Y ((ug)g∈G) = ηG0 ◦ f ′ = ηG0 ◦ diag{th|h ∈ G0} ◦ (sh)h∈G0 , where (sh)h∈G0 :
X → ⊕h∈G0Ph is a column-matrix, and diag{th|h ∈ G0} : ⊕h∈G0Ph → ⊕h∈G0hY is 
a diagonal matrix. It implies that θX,Y ((ug)g∈G) ∈ PrjA(X, ⊕g∈GgY ). Since θX,Y is 
injective, the restriction map θX,Y | : ⊕g∈GprjA(X, gY ) → PrjA(X, ⊕g∈GgY ) is injective. 
For any v ∈ PrjA(X, ⊕g∈GgY ), since X is finitely generated, there is a finite subset G0
of G such that v = ηG0v

′, where ηG0 = (qh)h∈G0 is a matrix with qh : Nh → ⊕g∈GgY the 
canonical injection, for h ∈ G0, and v′ : X → ⊕h∈G0hY . We may write v′ = (v′h)h∈G0 , 
where v′h : X → hY for h ∈ G0. Then v = (qhv′h)h∈G0 and θX,Y ((v′h)h∈G0) = v.

Next, we shall prove that v′h ∈ prjA(X, hY ) for each h ∈ G0.
Since v ∈ PrjA(X, ⊕g∈GgY ), we assume that there is a projective module ⊕i∈IP [xi]

such that v factors through ⊕i∈IP [xi]. Consider the commutative diagram

X
v

a

⊕g∈GgY

⊕i∈IP [xi].
b

For the morphism a : X → ⊕i∈IP [xi], since X is finitely generated, there is a finite 
subset J of I such that there is a commutative diagram

X
v

a

a′

⊕g∈GgY

⊕i∈JP [xi]

η
J

b◦η
J

⊕i∈IP [xi].

b

Set pk : ⊕g∈GgY → kY , for k ∈ G0. Then for each k ∈ G0, pkv = (pkqhv′h)h∈G0 = v′k
since pkqh = 1 whenever h = k. Then there is a commutative diagram
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X
v

v′
k

a′

⊕g∈GgY
pk

kY.

⊕i∈JP [xi]
pk◦b◦ηJ

b◦η
J

Thus v′k ∈ prjA(X, kY ) since ⊕i∈JP [xi] ∈ prjA for each k ∈ G0. It implies that θX,Y | is 
surjective, and hence θX,Y | is an isomorphism. Then we have the following commutative 
diagram

0 ⊕g∈GprjA(X, gY )

θX,Y |

⊕g∈GCA(X, gY )

θX,Y

⊕g∈GCA(X, gY )

θX,Y

0

0 PrjA(X,⊕g∈GgY ) DA(X,⊕g∈GgY ) CA(X,⊕g∈GgY ) 0.

By Five Lemma, we know that θX,Y is an isomorphism. The naturality of θX,Y follows 
from θX,Y . �
Theorem 5.5. Keep the notations in Notation 1. Assume that DA is a G-subcategory of 
ModA. If π• sends DA to DB and π• sends DB to DA, then the following hold.

(1) π• : CA → CB is a G-precovering.
(2) If A is locally support-finite and G is torsion-free, then π• : CA → CB is a Galois 

G-covering.

Proof. (1) By [9, Lemma 6.3], there is a G-stabilizer δ = {δg : π• ◦ g → π• | g ∈ G} for 
π•. Since CA is a G-subcategory of ModA and π• can be restricted to C, the restriction of 
δg on CA is also a functorial isomorphism. For any N ∈ CA and g ∈ G, we define δg,N =
QB(δg,N ). By Lemmas 5.2 and 5.3, QB(δg,N ) : π•(g ·N) → π•(N) is an isomorphism in 
CB . Then we have a functorial isomorphism δ = {δg}g∈G. Moreover, it is easy to check 
that δh,Nδg,h·N = δgh,N for any g, h ∈ G and N ∈ CA. Thus δ = {δg}g∈G is a G-stabilizer 
for π•.

It is well-known that there is a functorial isomorphism γ : ⊕g∈Gg → π•π•. Since 
DA is a G-subcategory of ModA and DA is closed under any direct sums, there is 
an isomorphism γY : ⊕g∈GgY → π•π•(Y ) in DA. Then it induces an isomorphism 
γ
Y

: ⊕g∈GgY → π•π•(Y ) in DA for any Y ∈ DA.
For any X and Y ∈ CA, from Proposition 5.4 and the fact that CB is a full subcategory 

of CB, we have the following commutative diagram
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⊕g∈GCA(X, gY )
∼=

π•X,Y

DA(X,⊕g∈GgY )

DA(X,γ
Y

)∼=

CB(π•(X), π•(Y ))
∼= DA(X,π•π•(Y )).

Thus π•X,Y is an isomorphism. It implies that π• is a G-precovering.
(2) Assume that A is locally support-finite. Then π• : modA → modB is a G-covering. 

Let X be a finitely generated B-module in CB. From [15], there exits a finitely generated 
A-module X ′ such that π•(X ′) ∼= X which is a certain direct summand of π•(X). By the 
assumption, we have that π•(X) ∈ DA. Since DA is closed under direct summands, we 
know that X ′ ∈ DA

⋂
modA. Note that DA

⋂
modA = CA. Thus X ′ ∈ CA. Therefore, 

π• is dense and hence, is a G-covering. Since C is Hom-finite Krull-Schmidt, so is C. By 
[9, Lemma 2.9], π• is a Galois G-covering. �
Corollary 5.6 ([19, Proposition 2.6]). Let A and B be locally bounded categories with 
G a group acting freely on A and π : A → B a G-invariant Galois G-covering. Then 
π• : modA → modB is a G-precovering. If A is locally support-finite and G is torsion-
free, then π• : modA → modB is a Galois G-covering.

Proof. It just takes the notations C = mod and D = Mod. Then it follows from Theo-
rem 5.5. �
Corollary 5.7. Let A and B be locally bounded Frobenius categories with G a torsion-free 
group acting freely on A and π : A → B a G-invariant Galois G-covering. If A is locally 
support-finite, then the triangle functor π• : modA → modB between two triangulated 
categories is a Galois G-covering.

Proof. It follows from [20, Theorem 2.6] and Corollary 5.6. �
Let A be a basic and connected finite-dimensional k-algebra. Then A is a locally 

bounded k-linear category. The trivial extension T (A) = A �DA of A by DA is defined 
to be the k-algebra whose additive structure is that of A ⊕DA and whose multiplicative 
structure is given by

(a, ϕ)(b, ψ) = (ab, a · ψ + ϕ · b),

for any a, b ∈ A and ϕ, ψ ∈ DA. Then T (A) is a self-injective and also is a locally 
bounded Frobenius category.

The repetitive algebra Â of T (A) = A � DA defined by Hughes and Waschbüsch [21]
is the doubly infinite matrix algebra, without identity, which can be represented as
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Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· ·
· ·

· ·
An−1 En−1

An En

An+1 En+1
· ·

· ·
· ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

in which matrices are assumed to have only finitely many entries different from zero, 
An = A and En = ADAA for all integers n, all the remaining entries are zero, and the 
multiplication is induced from the canonical maps A ⊗A DA → DA, DA ⊗A A → DA, 
and zero maps DA ⊗ADA → 0. From [21], Â is a Frobenius algebra and always infinite-
dimensional. Clearly Â is a locally bounded k-algebra. The identity maps An → An+1, 
En → En+1 induce an automorphism σ of A. The orbit category Â/〈σ〉 inherits from Â
a k-algebra structure, which is easily checked to be isomorphic to T (A). The projection 
functor F : Â → Â/〈σ〉 ∼= T (A) is a Galois G-covering.

It is shown in [33] that the repetitive algebra Ã is locally support-finite if and only if 
the strong global dimension of T (A) is finite, that is, the indecomposable complexes in 
the derived category have bounded length.

Corollary 5.8. Let A be a basic and connected finite-dimensional k-algebra and T (A) =
A � DA the trivial extension of A. If the strong global dimension of T (A) is finite, then 
the triangle functor π• : modÂ → modT (A) between two triangulated categories is a 
Galois G-covering.

Next, we apply our results into Gorenstein homological theory. First, we recall some 
notions.

Let E be an abelian category having enough projective objects. We denoted by PrjE
the full subcategory of E consisting of projective objects. A complex of projective ob-
jects P • : · · · → P i−1 → P i → P i+1 → · · · is said to be a complete projective complex
provided that the complexes HomE(P •, PrjE) and HomE(PrjE , P •) are acyclic. An ob-
ject X in A is called Gorenstein projective if X is a syzygy of a complete projective 
complex.

Now, we assume that A is a locally bounded k-linear category. We denote by GP(A)
the full subcategory of ModA consisting of Gorenstein projective objects in ModA. We 
denote by Gp(A) the full subcategory of modA consisting of finitely generated Goren-
stein projective A-modules. It is well-known that Gp(A) is a Frobenius category. By [2, 
Proposition 4.4], we have that GP(A) 

⋂
modA = Gp(A).

Corollary 5.9 ([2, Theorem 4.5]). Let A and B be locally bounded categories with G a 
group acting freely on A and π : A → B a G-invariant Galois G-covering. Then the 
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triangle functor π• : Gp(A) → Gp(B) is a G-precovering. If A is locally support-finite 
and G is torsion-free, then π• : Gp(A) → Gp(B) is a Galois G-covering.

Proof. Set C = Gp and D = GP. By [2, Lemmas 3.7 and 4.2], π• sends DA to DB and 
π• sends DB to DA. Then they satisfy the conditions of Theorem 5.5. It is easy to see 
that π• is a triangle functor since C = Gp is a Frobenius category and π• is exact. �
Corollary 5.10. Let A be a locally support-finite with G a torsion-free group acting freely 
on A. Let B be a locally bounded category and π : A → B a G-invariant Galois G-
covering. Then the triangulated category Gp(A) has Serre functor if and only if Gp(B)
has Serre functor.

Proof. By Corollary 5.9, we have a Galois G-covering π• : Gp(A) → Gp(B). The state-
ment follows from [9, Theorem 3.7]. �
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